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The integration of different sources of biological information about what defines a

behavioral phenotype is difficult to unify in an entity that reflects the arithmetic sum of

its individual parts. In this sense, the challenge of Systems Biology for understanding

the “psychiatric phenotype” is to provide an improved vision of the shape of the

phenotype as it is visualized by “Gestalt” psychology, whose fundamental axiom is that

the observed phenotype (behavior or mental disorder) will be the result of the integrative

composition of every part. Therefore, we propose the term “Gestaltomics” as a term

from Systems Biology to integrate data coming from different sources of information

(such as the genome, transcriptome, proteome, epigenome, metabolome, phenome,

and microbiome). In addition to this biological complexity, the mind is integrated through

multiple brain functions that receive and process complex information through channels

and perception networks (i.e., sight, ear, smell, memory, and attention) that in turn

are programmed by genes and influenced by environmental processes (epigenetic).

Today, the approach of medical research in human diseases is to isolate one disease

for study; however, the presence of an additional disease (co-morbidity) or more than

one disease (multimorbidity) adds complexity to the study of these conditions. This

review will present the challenge of integrating psychiatric disorders at different levels

of information (Gestaltomics). The implications of increasing the level of complexity, for

example, studying the co-morbidity with another disease such as cancer, will also be

discussed.

Keywords: systems biology, psychiatry, lung cancer, diagnosis, omics

INTRODUCTION

According to the World Health Organization (WHO), the frequency of psychiatric diseases has
been steadily increasing (World Health Organization, 2011). Furthermore, many patients do
not fully respond to therapy. There is a currently limited knowledge on the pathophysiology of
neuropsychiatric disorders, which in turn diminishes the ability to identify clinical biomarkers for
the early diagnosis of patients at risk (Martins-de-Souza, 2014; Sethi and Brietzke, 2015).

Abbreviations: CSF, cerebrospinal fluid; RBC, red blood cells; CNV, copy number variation; SNV, single nucleotide variation.

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00286
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00286&domain=pdf&date_stamp=2017-05-09
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:hnicolini@inmegen.gob.mx
https://doi.org/10.3389/fphys.2017.00286
http://journal.frontiersin.org/article/10.3389/fphys.2017.00286/abstract
http://loop.frontiersin.org/people/375301/overview
http://loop.frontiersin.org/people/10674/overview
http://loop.frontiersin.org/people/375297/overview


Gutierrez Najera et al. Systems Biology in Psychiatric Diseases

The classical approach for psychiatric diagnosis includes
an essential evaluation on the mental health of the patient,
by means of an interview, to determine the presence of a
series of signs and symptoms (Fatemi and Clayton, 2008). For
instance, paranoid schizophrenia is diagnosed by the presence
of delirium, hallucinations, self-inflicted injuries, personality
disorders, lack of substance abuse, and the continuity of this
clinical frame for more than 6 months. In addition, the
Diagnostic Interview for Genetic Studies (DIGS) is widely used
in the diagnosis of schizophrenia, validated for both USA
and non-USA populations, along with additional sources of
information such as the Family Interview for Genetic Studies
(Contreras et al., 2009). In this case, laboratory studies such
as urine drug screens or sleep-deprived electroencephalograms
are used to exclude stimulant-induced psychosis or complex
partial (temporal lobe) seizures (Lishman, 1987). A positive
familiar history provides further support in the diagnosis of
schizophrenia. Thus, the diagnostic process in psychiatry is
analogous to other branches of medicine where personal and
familiar history, physical examination, and laboratory tests
constitute essential steps. Regardless, it is difficult to obtain
an accurate description without careful and skillful probing
during face-to-face interviews. However, this phenomenology
can be interpreted under different theoretical frames of reference
pertaining to the formulation of the case but not to diagnosis
(Fatemi and Clayton, 2008).

Although the Diagnostic and Statistical Manual of Mental
Disorders (DSM) is often useful in classical diagnoses, it is
not designed to facilitate the development and integration of
biomedical knowledge. Therefore, the National Institute of
Mental Health has developed an alternative tool known as the
research domain criteria (RDoc). This multidimensional
approach utilizes units of information beyond clinical
phenotypes, i.e., imaging, behavior, etc. Thus, a matrix is
developed with constructs that can be related to different
elements of information ranging from imaging to genetics
(American Psychiatric Association).

The Human Genome Project, along with high throughput
technologies, has increased the biological knowledge of several
human illnesses. The genome sequencing and analyses of
physiological states have further contributed to this purpose.
However, the genome as a whole is difficult to interpret and in
the case of several multi-factor diseases such as diabetes, cancer
and neurological disorders, which often involve the function of a
large number of genes, biological pathways, and environmental
factors, can further convolute an assessment. Therefore, the
combination of genomic information with a detailed molecular
analysis will be important in the prediction, diagnosis and
treatment of diseases, also allowing the understanding of
initiation, progression, and prevalence of disease states (Williams
et al., 2004; Shi et al., 2009). In this regard, metabolomics is
the newest of the “omics” sciences; it provides a comprehensive
approach to understanding the biochemical regulation of
metabolic pathways and networks in a biological system.
Metabolomics is able to complement the data from genomics,
transcriptomics, and proteomics to provide a potentially systemic
approach in the study of central nervous system (CNS) diseases

(Weckwerth and Morgenthal, 2005). However, there are few
currently available studies in neuroscience regarding the data
integration from different “omics” sciences.

Often, neuropsychiatric diseases are biologically difficult to
define partly because the brain is more difficult to access
than other parts of the body. Moreover, research in psychiatry
is compounded by the complexity of the brain and the
heterogeneity of phenotypes in psychiatric disorders. Brain
imaging, genotyping, and immune system testing are important
approaches in understanding the biology of psychiatric illness.
The advances in technology have made possible the analysis of
whole units of cellular components. Regardless, the study of
protein and metabolic function in the CNS is made difficult
because of intricate cellular heterogeneity with a complex
neuronal morphology that includes cellular compartments
such as neural dendrites, postsynaptic dendritic spines, axons
and presynaptic terminals. Another factor contributing to the
difficulty in studying the metabolome of CNS in humans is the
limited access to either tissue or fluids, such as cerebrospinal
fluid (CSF), in order to study molecular alterations in psychiatric
disorders. Due to ethical considerations, it is often preferable to
analyze peripheral samples such as plasma, serum, leukocytes
and platelets, which are more easily available (Hayashi-Takagi
et al., 2014). An “omics” approach has the potential to accelerate
the discovery of markers for CNS diseases (Niculescu et al.,
2015a). As an example, there is already the use of Systems Biology
in the analysis of data from several “omics” technologies, such
as proteomics, improving the discovery of pathophysiological
mechanisms and biomarkers for brain injuries that could lead
to Alzheimer’s and Parkinson diseases (Abou-Abbass et al., 2016;
Jaber et al., 2016a,b).

The tendency today is to integrate the data from clinical and
“omics” studies to obtain a final behavioral phenotype (phenome)
(Williams et al., 2004; Monteith et al., 2015; Sethi and Brietzke,
2015). Genome-wide association (GWA) studies with metabolic
measurements have shown that genetic variation in metabolic
enzymes and transporters lead to concentration changes of their
respective metabolites (Suhre et al., 2011; Krumsiek et al., 2012).
The main goal of these studies is to identify new interactions
between genomic and metabolic systems, yielding valuable
insight for basic research and clinical application. The analysis
of metabolic data is often the result of several processes where
a substance can be identified as unique in the sample but the
specific process from which it was derived is unknown. This
concept is similar to the identification of a fingerprint: each one is
identifiable as unique, but it needs to be registered in a database,
that way we know who owns that print. The association with
genetics provides evidence of the metabolic pathway wherein
such a metabolite is involved and the process from which it
originates (Suhre et al., 2011; Krumsiek et al., 2012).

From the point of view of Gestalt psychology, the first
biological response is organized as units or structures, these
organized units or “gestalten” correspond to the exchange of
information and interactions between environmental stimuli and
the individual. The resulting “gestalten” are different than the
sum of their factors so “there is a tendency not only to perceive
the gestalten but also to complete and reorganize them according

Frontiers in Physiology | www.frontiersin.org 2 May 2017 | Volume 8 | Article 286

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Gutierrez Najera et al. Systems Biology in Psychiatric Diseases

to biological principles, which will vary in the different levels of
maturation or growth and the pathological states” (Bender, 1938).
Currently, the approach based on systems biology methods
is the most suitable for data integration from different levels
of information (genome, transcriptome, proteome, epigenome,
metabolome, phenome, and microbiome), in order to unify and
reorganize these “gestalten” (organized units of biological or
clinical data) in an integrated view of the psychiatric patient.
Therefore, “Gestaltomics” is an integrated view of different levels
of information ranging from clinical to “omics” data, proposing
the diagnosis of neuropsychiatric diseases. Early diagnosis of
these disorders could reduce the risk of developing chronic
diseases such as obesity, diabetes, cancer, etc. Past research has
proposed that affective disturbances involving mood alterations,
anxiety, and irritability may be signals of medical conditions
along with psychiatric diseases (Cosci et al., 2015). In this regard,
depressive symptoms are of first occurrence in approximately 38–
45% of pancreatic carcinoma cases and symptoms of a major
depressive illness may precede the diagnosis of lung cancer
(Jacobsson and Ottosson, 1971; Hughes, 1986). These studies
conclude that the development of psychiatric illness early in the
course of a medical condition could affect the prognosis and
therapy for patients diagnosed with the same medical disease.

On the other hand, addictive disorders are a class of chronic,
relapsing mental disorders that often result in death. In fact,
tobacco dependence is related with a higher risk for disease
and premature death because of its association with several
major health problems including respiratory and cardiovascular
diseases, and cancer. There is a current initiative to test the
Smokescreen genotyping array, a research tool for the significant
advance in understanding addiction and the development of
predictive models for personalized treatment strategies. This
array includes markers related to addiction and, interestingly, it
also has an additional set of comorbidity markers for lung cancer
and other psychiatric disorders (Baurley et al., 2016).

Therefore, understanding the molecular factors contributing
to psychiatric illness and identifying new biomarkers is essential
in the proposal of alternative tools for diagnosis, prognosis,
screening, or therapeutic targets. This manuscript describes some
examples on the current knowledge of the “omics” field in
three psychiatric conditions and their correlation with complex
diseases, mainly cancer.

“Omics” Technologies Applied in
Schizophrenia
Schizophrenia was described by Emil Kraepelin as “dementia
praecox, separated frommanic-depressive psychosis” (Kraepelin,
1893). The current criteria for schizophrenia diagnosis has been
compiled from years of empirical testing and recorded in the
Diagnostic and Statistical Manual, 5th edition (DSM-5). The
existence of different types of schizophrenia has been proposed,
each one with its own phenotype and genotype. Most research
has been focused on loci in chromosomes 6, 8, 13, and 22. Of
these chromosomes, chromosome 22 calls for attention since it
contains the comt (catechol o-methyltransferase) gene, involved
in dopaminemetabolism. Therefore, individuals with a particular

comt genotype (e.g., val/val allele) are at risk developing
schizophrenia (Combs et al., 2012). Research conducted on
samples from schizophrenia patients, both peripheral and
postmortem brain samples, revealed a correlation, although
low, in the results obtained from peripheral samples (blood,
plasma, serum, and platelets) compared to CNS samples (CFS,
prefrontal cortex and other brain tissues). In one of these
studies using DNA microarrays, postmortem analyses detected
177 genes in schizophrenia related brains. From these genes, only
6 correlated with the obtained blood results (Glatt et al., 2005). In
another study, half of the genes found related to schizophrenia
in the prefrontal cortex were also found in blood from the
same patients (Sullivan et al., 2006). The hypomethylation of
st6galnac1 in the blood and brain of schizophrenia patients has
been previously reported (Dempster et al., 2011). Allele copy
number variations (CNVs) seems to be the most relevant risk
factor for schizophrenia, and the 15q11.2 (BP1-BP2) deletion
confers the risk for developing schizophrenia (Stefansson et al.,
2013). Using metabolomics, an increment in free fatty acids and
ceramide in blood and brain samples was observed (Schwarz
et al., 2008). Proteomics experiments using SELDI-TOF MS
showed that the ApoA1 protein was downregulated in CFS
and blood (red blood cells; RBC) (Huang et al., 2007). On the
other hand, current advances in schizophrenia physiopathology
research and the molecular effects of anti-psychotic drugs have
made clear the need of biomarkers for this disease. Metabolomics
techniques are not only useful in this purpose but also in
monitoring the effect of these types of drugs in psychiatric
patients.

A metabolomics study of serum using mass spectrometry
(MS) reported 20 metabolites in patients with schizophrenia
whose levels were modified when compared with the controls.
These metabolites include citrate, palmitic acid, allantoin, and
mio-inositol (Xuan et al., 2011). He et al. (2012) performed a
nuclear magnetic resonance (NMR) study in the plasma from
schizophrenia patients. In this study, the patients were diagnosed
before starting the treatment. There was also a group of subjects
under medication. Both groups were compared to the control
group (no schizophrenia), identifying different metabolites from
to the study performed by Xuan.

“Omics” Technologies Applied in Autism
Autism spectrum disorders (ASDs) are highly hereditary and
genomic studies have revealed that a substantial proportion of
ASD risk resides in rare variations ranging from chromosome
abnormalities (CNV) to single-nucleotide variations (SNV).
These studies highlight a striking degree of genetic heterogeneity,
implicating both de novo germline mutation and rare inherited
ASD variations (Pinto et al., 2014). De novo CNVs are observed
in 5–10% of screened ASD-affected individuals, and after further
follow-up studies, some of them have been shown to alter high-
risk genes. De novo or transmitted CNVs, such as 15q11.2–q13
duplications of the affected region in Prader-Willi and Angelman
syndromes, the 16p11.2 deletion, 16p11.2 duplication, and X-
linked deletions, including the PTCHD1-PTCHD1AS locus, have
also been found to contribute to this risk (Stefansson et al., 2013).
Exome and whole-genome sequencing studies have estimated at
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least another ∼6% contribution to ASD and an additional 5%
conferred by rare inherited recessive or X-linked loss-of-function
(LoF) SNVs (Pinto et al., 2014 and references therein). A genetic
overlap between ASD and other neuropsychiatric conditions
has been increasingly recognized. Informative studies on the
metabolome of ASD individuals showed alterations in the levels
of amino acids in plasma, platelets, urine and CSF (Ming et al.,
2012). Further, it has been reported that the neurotransmitter and
hormone metabolism of serotonin, catecholamines, melatonin,
oxytocin, GABA, and endorphins, for example, are altered.
In a case-control study, changes in the levels of succinate
and glycolate in urine were observed (Emond et al., 2013).
Therefore, alterations in metabolism are common features of
ASD. In this regard, gut microbiota has important effects in the
development of behavioral symptoms relevant to ASD and other
neurodevelopmental disorders in a mouse model (Hsiao et al.,
2013).

“Omics” Technologies Applied in Suicide
In the area of mental health, suicide is a particular prevention
priority as it accounts for an estimated 804,000 deaths in 2012
(World Health Organization, 2015b). An objective of WHO
Mental Health Action Plan calls for a 10% reduction in the rate
of suicide by 2020. Men are four times more likely to commit
suicide than women. However, women make more nonfatal
suicide attempts than men. There are several factors involved
in suicide and suicide attempts, the most important of which is
having a psychiatric disorder. More than 90% of suicides have
a diagnosable psychiatric disorder at the time of death, mood
disorders being the most common (Fatemi and Clayton, 2008).
The origin of suicidal behavior is multifactorial and includes
genetic, biological, and psychosocial factors. The slc6a4 gene has
been associated with suicide but only in women (Gaysina et al.,
2006). The gene comt has been related to suicide in both women
and men, but the degree of association differs between genders
(Kia-Keating et al., 2007). GWAs have found gene markers
for suicidal ideation such as polymorphisms rs11628713 and
rs109030324 of genes papln and il28ra, respectively (Laje et al.,
2009). A study addressing the relationship between genotype
and brain transcriptome reported that the GABA A receptor
gamma 2 (gabrg2) had lower postmortem expression in the
brains of suicide cases and was thus associated with suicide
(Yin et al., 2016). Amongst the polygenes implicated with 590
suicide attempts (SA) were several associated with important
development functions (cell adhesion/migration, small GTPase
and receptor tyrosine kinase signaling), and 16 of these SA
polygenes have previously been studied in suicidal behavior
(bdnf, cdh10, cdh12, cdh13, cdh9, creb1, dlk1, dlk2, efemp1,
foxn3, il2, lsamp, ncam1, ngf, ntrk2, and tbc1d1) (Sokolowski
et al., 2016). A recent study sought biomarkers for suicidal
ideation using functional genomics. The authors identified genes
involved in neuronal connectivity and schizophrenia, and the
biomarkers validated for suicidal behavior included a wide
number of genes involved in neuronal activity and mood.
The 76 biomarkers validated for suicidal behavior map to
biological pathways involved with the immune and inflammatory
response, mTOR signaling, and growth factor regulation. Further,

other potential therapeutic targets or biomarkers for drugs
known to mitigate suicidality were identified, such as omega-
3 fatty acids, lithium, and clozapine. These biomarkers are also
involved in psychological stress response and in programmed
cell death (apoptosis) (Niculescu et al., 2015b). A proteomics
study of prefrontal cortex tissues showed that alpha crystalline
chain B (CRYAB), glial fibrillary acidic protein (GFAP), and
manganese superoxide dismutase (SOD2) appear only in suicide
victims (Schlicht et al., 2007). Despite the vast amount of
information from suicide “omics,” it has not been possible to
integrate the data to provide a “gestalt” view of the individual,
allowing the prevention of this behavior and its outcome.
Thus, the integration of this knowledge will provide new
methods for the diagnosis and treatment of this complex
behavior.

Adding One Level of Complexity:
Comorbidity of Cancer and Psychiatric
Disorders
To impulse the advance toward a new era of precision
medicine, in 2015 President Obama proposed a research initiative
(www.whitehouse.gov/precisionmedicine). Precision medicine
includes prevention and treatment strategies taking individual
variability into account. This concept has been improved by
the development of large-scale biological databases, powerful
methods for characterizing patients, and computational tools for
the analysis of large data sets. The proposed initiative has two
main components: a near-term focus on cancer and a long-term
aim to generate applicable knowledge for the whole range of
health and disease (Collins and Varmus, 2015).

Cancer is a major public health problem and a challenge that
needs to be solved by amultidisciplinary approach (WorldHealth
Organization, 2015a). Its appropriate control includes health care
education to improve prevention and early detection programs;
and optimizing diagnosis to determine specific treatment and
provide palliative care improving the patients’ quality of life
(Mohar et al., 2009).

The need for psychiatric services in hospitals can be observed
by the high prevalence of psychiatric disorders. In oncology
hospitals, the prevalence of these disorders is approximately 50%
(Citero Vde et al., 2003). A study evaluating the prevalence
of psychiatric illness in cancer patients reported that 47% of
cancer patients diagnosed with mental disorders, amongst them
85% with anxiety and depression, 8% with cerebral organic
disorders, and 7% with personality disorders (Citero Vde et al.,
2003). Another study reported this type of disorder in 11–21%
of patients at the hospital (Razavi et al., 1990). Delirium is
often found in patients at the general hospital. The prevalence
is 25% in cancer patients, and 85% in terminally ill patients.
Psychoses and cognitive impairment have demonstrated a key
role in slowing down the progress of cancer treatment in these
patients (Citero Vde et al., 2003). A psychiatric comorbidity
between smoking and psychosis has severe effects in the morbi-
mortality in those patients and results in an increased number
of deaths by suicide. It has been estimated that schizophrenia
patients are addicted to nicotine in 80% of cases compared to
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22% in the healthy population (Brown, 2000). On the other hand,
obsessive-compulsive disorder seems to be a protective pathology
against nicotine addiction (Dell’Osso et al., 2015).

Cancer is a disease whose treatment has high personal,
financial, and social costs. These factors influence the
development of anxiety and depression disorders in the
cancer patient. Even cancer treatments such as chemotherapy,
which produces serious secondary effects, affect this condition.
For instance, breast cancer comorbidity with depression
is associated with a poorer quality of life, poor treatment
adherence, impaired physical and cognitive function, and cancer
progression or survival. Understanding depression etiology
associated with breast cancer is a major concern. Depression in
breast cancer patients is often the result of several contributing
biological factors; amongst them are hormonal, inflammatory,
and genetic mechanisms, and psychological factors such as
bodily disfigurement and impaired sexual function. Genetic
risk is important in the etiology of depression precipitated by
medical conditions like cancer, which has been proposed as an
environmental risk factor (Caspi et al., 2010). Smoking is one
of the main risk factors within these environmental factors.
In fact, the WHO global initiative for Framework Convention
on Tobacco Control (Deland et al., 2003) is one of the first
strategies for primary prevention of cancer, because tobacco is
related to 16 different types of cancer and smoking is the cause
of 71% of deaths due to lung cancer (2015). The knowledge from
the biological, molecular, and clinical data could improve the
outcome for this disease and help avoid the behavior increasing
the susceptibility for cancer development. A broad research
program to improve creative approaches to precision medicine,
test them rigorously, and use them to build the evidence base
needed to guide clinical practice is essential (Collins and Varmus,
2015). A clear example for this is the relation between smoking
and lung cancer.

Nicotine Addiction and Lung Cancer
The clearest example of how a psychiatric disorder influences
the development of cancer is the relation between smoking and
lung cancer. Smoking is an addictive disorder and a major public
health concern. It is the primary cause of death worldwide, as
actively smoking causes different chronic diseases, several types
of cancer, and respiratory and cardiovascular diseases (World
Health Organization, 2008).

There is evidence presented in the 2014 Surgeon General’s
Report (US Health Department) modifying cancer care. The
detrimental consequences of smoking in patients with cancer
are mediated by the activation of tumorigenic pathways and
physiological alterations, including the complications associated
with cancer treatment and development of comorbidities.
However, no cancer treatment has been proved more effective in
cancer patients who smoke compared to non-smoking patients,
neither are there any prognostic biomarkers for cancer patients
who continue to smoke (US Department of Health, 2014).

If both processes share the samemolecular basis, and therefore
the same biological pathways, it is important to highlight the need
to study psychiatric diseases along with other co-morbidities
such as cancer. The neuronal acetylcholine nicotinic receptors

(nAChRs), a protein family of pentameric ion channels regulated
by ligands, are potential candidates. These receptors can mediate
signal transmission through the synapse as well as release of
several neurotransmitters. The receptor subtype in the brain is
the α4β2 form. Some α4β2 receptors also contain subunit α5,
which is regulatory, inactivating the receptor. Nicotine is an
exogenous agonist of these receptors. Seconds after starting to
smoke, nicotine produces a physical response. Recent studies
show that nicotine, despite not being carcinogenic, promotes
cell proliferation, metastasis, angiogenesis, and resistance to
apoptosis (Warren et al., 2014, and references therein). These
processes, mediated by nAChRs, may influence the effectiveness
of anti-cancer treatment (chemotherapy, radiotherapy, or
targeted therapy). The evidence indicates that smoker patients
have lower survival rates than those patients giving up smoking
before starting treatment; suggesting that nicotine supplemented
for smoking cessation treatment reduces the response to anti-
cancer drugs (Czyzykowski et al., 2016).

Nicotine and its metabolites activate nAChRs and β-
adrenergic receptors that in turn activate several pathways, such
as the Ras/Raf/MEK/MAPK and PI3K/Akt oncogenic pathways,
and causing cross-activation of these pathways producing a
tumor-promoting phenotype. Furthermore, nicotine and the
activation of nAChRs decrease the therapeutic response to
chemotherapy and radiotherapy both in vitro and in vivo
(Dasgupta et al., 2006; Warren et al., 2010; Momi et al., 2012).

Genetic variations in nAChRs have been proposed as strong
risk factors for nicotine dependence and susceptibility to lung
cancer. GWAS involving human addictions in lung cancer
patients have reported the same variants in the gene cluster
chrna5/a3/b4, previously associated with nicotine dependence
and lung cancer susceptibility (Wang et al., 2009). This gene
cluster plays a key role in nicotine dependence, lung cancer and
loss of lung function when the allele A of the polymorphism
rs16969968 is present (Gabrielsen et al., 2013). Moreover,
nicotine was suggested as an intermediary factor between
variants at the chrna5/a3/b4 region and lung cancer (Tseng et al.,
2014). Although it was previously considered that rare non-
synonymous variants in this region played a protective role,
the variant rs56501756, encoding for R336C, confers a risk for
nicotine dependence, lung cancer and other smoking-related
diseases (Thorgeirsson et al., 2016).

Moreover, there is evidence that smoking cessation treatments
are affected by genetics. The chrna5/chrna3/chrnb4 cluster
defines haplotypes of low, intermediate and high risk of cessation
treatment failure, according to the presence of polymorphisms
rs16969968 and rs680244 (Chen and Bierut, 2013). Therefore, the
identification of smokers with different haplotypes implies the
need for personalized smoking cessation treatments.

However, research is not limited to genetic data only; there
is research on nicotine metabolism and genotype association
as well. One example of this concerns the cyp2a6 gene coding
for P450 2A6, the major nicotine metabolizer enzyme. Genetic
variations in the cytochrome cyp2a6 gene contribute greatly to
the observed differences in nicotine metabolism, thus influencing
smoking habits in different populations (Park et al., 2016).
Differences in nicotine metabolism and risk of nicotine addiction
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have been attributed to functional allelic variation in cyp2a6
(Mwenifumbo and Tyndale, 2009; Al Koudsi and Tyndale, 2010).
The meta-analysis of samples from the ENGAGE consortium
proved the association between SNP’s in this locus and the
number of cigarettes smoked per day (Thorgeirsson et al., 2010).
Further evidence on the association of cyp2a6 with the number of
cigarettes smoked per day and nicotine dependence is observed in
the synergic effects of the chrna5/chrna3/chrnb4 cluster and this
gene, showing independent and additive effects of allelic risk for
these two chromosomal regions in two phenotypes (Wassenaar
et al., 2011).

Active smoking is an established critical factor for epigenetic
modification. Methylation changes were detected studying
the association of active smoking exposure with methylation
patterns; amongst these studies were epigenome-wide association
studies (EWASs) and gene-specific methylation studies (GSMSs)
(Gao et al., 2015). At molecular level, epigenetic factors such as
DNA methylation have been proposed as biomarkers for both
psychiatric disease and cancer (Ai et al., 2012). The correlation
between methylation in leukocytes from patients with Parkinson
disease and in neurons from the same patient has been reported
(Masliah et al., 2013). In breast cancer, methylation of the bdnf
gene (brain-derived neurotrophic factor) has been studied in
relation with depression in mastectomy patients (Kim et al.,
2013; Kang et al., 2015). In fact, the onset of smoking has been
associated with bdnf, a neurotrophin identified as a possible
candidate gene (Tobacco Genetics Consortium, 2010).

Systems Biology and the Challenges in
Understanding the Underlying
Mechanisms of Human Behavior
Data-intensive science consists of three basic activities: capture,
curation, and analysis. These phases raise a challenge in systems
biology science. These challenges entail not only their size but
also their increasing complexity. Curation and analysis become
important after capturing data from several experiments. It
includes storage, retrieval, dissemination, and data filtering and
integration. Algorithms and software tools developed for the
analysis of biological data also face the problem of scalability
when data become larger. However, several big databases have
been created around the world for the curation and analysis
of biological data, and their data volume and performance
are gradually improving. These databases include GeneBank
and Gene expression omnibus (GEO) from NCBI (Altaf-Ul-
Amin et al., 2014). Recently, other projects have been initiated
such as ENCODE (Encyclopedia of DNA Elements), a project
supported by an international collaboration of research groups
funded by the National Human Genome Research Institute
(NHGRI/NIH). ENCODE aids the biologist using human and/or
animal genetic data to study disease with a comprehensive list of
functional elements in the human genome, including elements
that act at protein and RNA levels, and regulatory elements that
control cells and the circumstances in which a gene is active.
Further, global metabolomics are used for the identification of
metabolic pathways altered due to disturbances in biological
systems. The statistical analysis involves an extensive process

that sometimes may lead to the identification of a very narrow
range of metabolites as biomarkers. In this regard, The Human
Metabolome Project, funded by Genome Canada, was launched
in 2005. The purpose of the project is to facilitate metabolomics
research by providing a linkage between the human metabolome
and the human genome. The project mission is to identify,
quantify, catalog and store all metabolites that can potentially be
found in human tissues and biofluids at concentrations greater
than one micromolar. These data are free to access through the
Human Metabolome Database (www.hmdb.ca) (Wishart, 2007;
Wishart et al., 2009, 2012). The application of metabolomics in
cancer research has led to a renewed appreciation of metabolism
in cancer development and progression. It has also led to the
discovery of biomarkers and novel cancer-causing metabolites.
However, with so many cancer-associated metabolites being
identified, it is often difficult to associate these compounds
with their respective cancer type. It is also challenging to track
down the information on the specific pathways that particular
metabolites, drugs or drug metabolites may be affecting (Wishart
et al., 2016).

The ENIGMA Consortium is an initiative seeking to integrate
genetics, genomics and brain imaging (http://enigma.ini.usc.
edu); it is a global alliance of over 500 scientists spread across 200
institutions in 35 countries collectively analyzing brain imaging,
clinical and genetic data. ENIGMA has grown to over 30 working
groups studying 12 major brain diseases, pooling and comparing
brain research data. In some of the largest neuroimaging studies
to date, such as in schizophrenia andmajor depression, ENIGMA
has found replicable disease effects that are consistent worldwide,
as well as common factors that modulate disease effects in
different populations (Thompson et al., 2015, 2016).

Systems biology is being used to analyze data from different
levels of information in psychiatric disease. In a study of CNVs
and SNVs in genes related to ASD, chromatin remodeling
and transcription regulation were inferred on functional gene
networks related to neuronal signaling, development synapse
function, chromatin regulation, MAPK, and other signaling
pathways (Pinto et al., 2014). Other studies in systems
biology suggest that the interplay between sleep, stress, and
neuropathologies emerge from genetic influences on gene
expression and their collective organization through complex
molecular networks relating to underlying sleep mechanisms,
stress susceptibility and neuropsychiatric disorders (Jiang et al.,
2015). In animal models, a systems biology study based on
proteomic and metabolomic research developed a schematic
model summarizing the most prominent molecular network
findings in the Df(16)A± mouse (a model of the 22q11.2
deletion syndrome). Interestingly, the implicated pathways
were linked to one of the proteomic candidates, O-Linked
N-acetylglucosaminyltransferase (OGT1), a predicted miR-185
target and a new mechanism associated with 22q11DS, which
may be linked to a cognitive dysfunction and an increased risk
of developing schizophrenia (Wesseling et al., 2016).

An analysis comparing proteome and biological pathways
and their involvement with different psychiatric illnesses
showed molecular similarities across all major neuropsychiatric
disorders. These results, analyzed by systems biology methods,
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proved an overlapping of pathways affecting protein expression
in a similar manner in these disorders. This supports the
hypothesis that major neuropsychiatric disorders represent a
disease of the brain with a spectrum of phenotypes derived of the
genotype and the effect of the environmental stimuli (Figure 1;
Gottschalk et al., 2014).

One of the best efforts to materialize the integration of the
phenome with the genome is exemplified by the Consortium
for Neuropsychiatry phenomics, at the University Of California
in LA (UCLA) (Bilder et al., 2009b). Besides making available
a brain imaging database of healthy individuals and patients
with neuropsychiatric disorders such as schizophrenia, bipolar
disorder and attention deficit/hyperactivity disorder, it also
provides bioinformatics tools to visualize and analyze these
dataset in a “systematic study of phenotypes on a genome-wide
scale,” including basic and clinical information (Poldrack et al.,
2016). The concept of phenome is evolving to phenomics or
“the discipline to enable the development and adoption of high-
throughput and high-dimensional phenotyping” (Bilder et al.,
2009a; Houle et al., 2010). The “phenomics” proposal of the
Consortium of Neuropsychiatry includes an integrative vision of
data in other complex biological systems and is already achieving
that integrating vision (Bilder et al., 2013). We wish to convey
this vision in medical practice, one that will also consider the
socio-cultural issues and comorbidities of the patients. Of course,
conveying the idea that “phenomics” applied to patient-centered
medical practice will be “gestaltomics” in the near future.

Despite the efforts to integrate several networks of
information, it has not been possible to personalize medicine
through an integrative view of the individual through different
levels of information; therefore, “gestaltomics” is an unifying
vision of different sources of information through a systems

FIGURE 1 | Disease spectrum of Psychiatric illnesses. The definition of

neuropsychiatric phenotypes has been difficult to limit into a series of signs

and symptoms overlapping the different psychiatric diseases. This issue is

usually observed beyond clinical level; however, “omics” data have facilitated

the contemplation of psychiatric illnesses as a disease spectrum of the brain.

Genetics is an important component in the origin of the disease and the

resulting phenotype is determined by several intermediate phenotypes derived

from the influence of epigenetic factors (environmental stimuli).

biology approach that is not limited to a biological understanding
of the disease and instead follows an old medical principle from
Hippocrates “It is far more important to know what person
the disease has than what disease the person has.” The onset
of symptoms identify the clinical stage of the disease at the
time of diagnosis. The disease can progress to mild, severe or
fatal, i.e., “the spectrum of disease.” The disease process results
in recovery, disability or death, which is the reason why it is
important to identify the individuals at risk (The Center for
Disease Control and Prevention, US Department of Health
Human Services, 1992). The early screening of a high-risk group,
such as smokers, during the subclinical stage of the disease could
identify a difference in the development of a disease such as
cancer or influence the outcome to this disease. These screenings
could involve the analysis of blood and urine samples, which are
easy to obtain. It could involve the genotyping of genes, such
as the cluster chrna5/chrna3/chrnb4. Further, the appropriate
diagnosis of the psychiatric disease at the onset of symptoms
could lead to an adequate treatment or therapy for the patient.

During the development of psychiatric illness-cancer, the
complexity of both diseases becomes increased. Thus, the global
view of the individual is vital for cancer survival. Figure 2

shows a diagram describing the major levels of information
regarding both psychiatric diseases and cancer implicated in
the “gestaltomics” approach for disease diagnosis, prognosis,
and discovery of therapeutic targets. The mechanistic view of
these diseases, obtained from clinical and biological information,
seems to be unified by common genetic factors leading to
the activation of major biological pathways, in turn influenced
by environmental factors (epigenetics), regulating the signal
intensity causing several phenotypes of psychiatric illnesses as
a disease spectrum (Figure 1). The task of systems biology is to
unravel the complex mechanisms orchestrating such behavior.
The construction of ontologies, whose principles could be applied
to the systems biology of complex diseases, has been proposed in
order to cope with this biological complexity.

The formation of ontologies that introduced human agents
and software to organize information and execute a common
goal in healthcare was proposed in 1998 (Falasconi et al., 1998;
Falasconi and Stefanelli, 1998). This began with computer-
based patient record (CPR) prototypes (Webster, 2001). However
to achieve this goal, the problem of harmonizing data from
one database to another had to be solved, this problem
consisted in the definition of concepts or entities using the
unification or integration of different data. The purpose of a
medical ontology library is to analyze, integrate, and formalize
medical terminologies of different areas or applications (Pisanelli
et al., 2004), as an example, the concept of cancer can be
defined from several points of view, morphological, biochemical,
pathological, etiological, etc. The ontology library would serve as
an informatics platform including every definition according to
specified parameters. Therefore, the following principles must be
followed in the construction of ontologies: (a) logical consistency
(logical language and explicit formula semantics), (b) semantic
coverage (all entities of its domain and all entity types of its
domain), (c) modeling precision (only represents the intended
models to accomplish the task of the ontology), (d) strong
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FIGURE 2 | Gestaltomics, as an integrated view of an individual, is obtained by unifying different levels of information from ranging from genetics to

clinical data. The data networks originate from different biological and clinical sources influenced by the presence of two or more diseases; such is the case of the

comorbidity psychiatric disease, cancer and the social environment, which is reflected at a biological level.

modularity (to organize the domain into different descriptions),
and (d) scalability (the language used expresses the intended
meaning according to the domain or tasks to accomplish)
(Pisanelli et al., 2004).

The increasing amount of data derived from genomics led
to the development of biological ontologies (Fernández-Bries
et al., 2004), introducing also an integrative approach using
bioinformatics (Gopalacharyulu et al., 2008). Afterwards,
cognitive ontologies, based on the structure–function data
from neurologically affected patients, integrated cognitive, and
anatomical models and organized the cognitive components
for diverse tasks into a single framework (Price and
Friston, 2005). Currently, ontologies serve as “a means to
standardize terminology, to enable access to domain knowledge
representation, cognitive science, to verify data consistency and
to facilitate integrative analysis over heterogeneous biomolecule
data” (Hoehndorf et al., 2013).

The ontology proposed by the Consortium of
Neuropsychiatric Phenomics continues with the sequence
of platforms being implemented to improve the definition of
psychiatric phenotypes through different levels or domains of

knowledge (syndrome, symptom, cognitive phenome, neural
systome, cellular-signalome, Proteome, genome) seeking to
define a disease more accurately, including the data derived from
each domain, and focusing mainly on defining the cognitive
phenome of psychiatric diseases. The multivariate definition of a
phenotype can lead to advances in the face of complex diseases,
such as cancer and psychiatric diseases. This not only improves
the definition of phenotypes but also establishes connections
between intermediate phenotypes (Bilder et al., 2009a). Together
with the initiative of the National Mental Health Research
Domains Criteria (RDoC), it will have a direct impact on the
improvement of the diagnostic taxonomy of mental disorders
based on brain biology (Bilder et al., 2013).

It is interesting that, in some of the ontologies available on
the web, the harmonization of different formats of bioinformatics
data or reservoirs of information is being achieved. Since the
principles that construct these ontologies can be applied to
the bioinformatics of complex diseases, this type of initiatives
from multidisciplinary groups can be a more effective approach,
through Systems Biology, to address the complexity issue of
diseases such as cancer and psychiatric disorders in an organized
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framework that would provide an integral picture of the
individual and his illness.

“Omics” Studies on Neuropsychiatric
Disorders and Cancer
There few studies regarding the association of psychiatric diseases
and cancer, such as schizophrenia and breast cancer (Catts
et al., 2008; Bushe et al., 2009), or Alzheimer’s disease with
reduced risk for cancer (Roe et al., 2005), addressing a potential
opportunity for biomedical research (Catalá-López et al., 2017).
A promising field in “omics” studies is the association between
alcohol drinking behavior and cancer.

Alcohol abuse has been recognized as a common component
in different types of cancer (World Health Organization, 2014).
Alcoholism is accepted as a disease and though DMS-V criteria
distinguish between alcohol dependence and alcohol abuse,
the diagnosis criteria is evolving. There is also a variety
of phenotypes of alcoholism. Polymorphisms of the alcohol
dehydrogenase (ADH1BArg48His) and aldehyde dehydrogenase
(ALDH2 Glu487Lys) genes are commonly associated with
alcohol consumption and cancer.

The ADH1B gene and its alleles, Arg48His (rs1229984) and
Arg370Cys (rs2066702), are associated with alcohol metabolism
and drinking behavior, cancer, and human phenomes (Polimanti
and Gelernter, 2017). Esophageal cancer is associated with an
Arg/Arg genotype of ADH1B Arg48His, although its 48His
allele has been proved to have a protective effect against this
type of cancer (Mao et al., 2016). The association of ADH1B

with colorectal cancer risk in Chinese population has been
reported (Zhong et al., 2016). It has also been shown that
this gene is correlated with gastric cancer (Chen et al., 2016).
In addition, the ADH1B Arg48His allele increases lung cancer
risk in carriers (Álvarez-Avellón et al., 2017). ALDH2 and
ADH1B polymorphisms are associated with a higher risk for
bladder cancer and alcohol abuse (Masaoka et al., 2016). Alcohol
abuse also mediates the ADH1B effect on hepatitis B-related
hepatocellular carcinoma risk (Liu et al., 2016), and head and
neck squamous cell carcinoma (Ji et al., 2015). There are few
omics studies on the field; however, a noteworthy study on the
microbiome in fecal samples of alcoholic individuals could help
to understand the phenotype of individuals at risk of developing
colorectal cancer (Tsuruya et al., 2016).

There is yet an enormous task to be undertaken in the “omics”
field of comorbidity of psychiatric diseases and cancer. The
knowledge gathered from this exciting field will contribute to
the successful development of personalizedmedical care for these
patients.

CONCLUSION AND PERSPECTIVES

The present review highlights how the vast amount of
information from omics technologies in complex diseases, such
as schizophrenia, present several challenges regarding data
management and format harmonization of output data. Despite
the challenge, some studies have performed successful analyses
starting from different technological platforms (See Table 1).

TABLE 1 | Important findings in psychiatric disorders by using “omics” technologies described in this review.

Disease Discovery according to “omics” data References

SCHIZOPHRENIA

Genome Loci 6, 8, 12, and 22 associated to schizophrenia Combs et al., 2012

Hundred and seventy-seven genes related to schizophrenia in brain Glatt et al., 2005

Allele copy number variation implicated in the development of schizophrenia Stefansson et al., 2013

Metilome Hypomethylation of st6galnacl in brain and blood Dempster et al., 2011

Proteome Apo1 was downregulated in CSF and RBC Huang et al., 2007

Metabolome and lipidome Twenty metabolites and fatty acids in serum and plasma changed in patients, changes were also observed in

patients with drug treatment

Xuan et al., 2011; He et al.,

2012

AUTISM

Genome ASD risk is conferred by rare variations from CNVs to SNVs Pinto et al., 2014

15q11.2-q13 duplications, 16p11.2 deletion, 16p11.2 duplication, and X-linked loss-of function SNVs

associated to autism

Metabolome Changes in the levels of aminoacids in plasma, CSF, and urine. The levels of neurotransmitters and hormones

are altered

Ming et al., 2012

Succinate and glycolate in urine changed Emond et al., 2013

Microbiome Gut microbiota has important effects in the development of symptoms Hsiao et al., 2013

SUICIDE

Genome The slc6a4 gene associated to suicide in women Gaysina et al., 2006

comt gene also related to suicide Kia-Keating et al., 2007

papln and il28ra (rs11628713 and rs109030324) markers of suicidal ideation Laje et al., 2009

Transcriptome garbrg2 expression was lower in brain of suicides Yin et al., 2016

Seventy-six genes for suicide are involved in neural connectivity, immune, and inflammation responses Niculescu et al., 2015b

Proteome CRYAB, GFAP, and SOD2 proteins expressed only in prefrontal cortex tissues from suicides Schlicht et al., 2007

CSF, cerebrospinal fluid; RBC, red blood cells; CNV, copy number variation; SNV, single nucleotide variation.
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Because most studies in the “omics” field are separate
entities and do not integrate other levels of information,
only a few have taken this approach (van Eijk et al.,
2014). van Eijk et al. attempted an “omics” analysis with
different levels or “layers” of genomic information (such as
SNPs, methylation, and gene expression), identifying disease
susceptibility loci for neuropsychiatric traits due to the
enrichment of disease-specific signals when combining different
genomic layers prioritizing genomic loci. This approach
supported the use of whole blood for the study of brain-
related diseases (van Eijk et al., 2014). This issue could be
solved also for other peripheral samples through integrative
studies.

Systems Biology must be able to provide proper quantitative
schemes that will contribute to the understanding of underlying
mechanisms and phenotype prediction in psychiatric diseases,
as well as its association with other comorbid diseases such
as cancer. Some groups have developed mathematical analyses
using model systems exploring feasible metabolic phenotypes in
human cancer cell lines and tissues (Lewis and Abder-Haleem,
2013). In this regard, a metabolic phenotypemodeling performed
by Diener et al. (2016) used metabolome and expression data
to infer the metabolic phenotype of HeLa cancer cells. The
mathematical modeling, based on the metabolite concentrations
in this study, set the basis for inferring affected enzymes
in a diseased state when it is not evident at genomic level.
Another important advance in exploring metabolic phenotypes
is the Human Metabolic Atlas database containing a set of
tissue specific genome scale metabolic reconstructions of human
tissues (Pornputtapong et al., 2015). Therefore, advances in
multiscale modeling promises the inference of the metabolic
phenotype from a cell to a whole organism. Notably, this
type of studies could have the potential to improve the
decision-making process regarding the type of chemotherapy
administered to a cancer patient (Diener and Resendis-Antonio,
2016).

Ontologies are an excellent proposal for the integration of
clinical, biological and behavioral information enabling a precise
description of the disease presented by an individual. The
use of multidisciplinary platforms, integrating the intermediate
phenotypes contributing to the global phenotype, will provide
the necessary tools for data analyses. We have already discussed
the existence of different databases and software available from
various platforms, which can be used to analyze experimental
data derived from patient samples. We propose the development
of a network derived from each type of data; the elements of
such a network should be shared with the other networks of
biological information. The convergence of evidence provided
by bioinformatics analyses will allow the visualization of
a characteristic phenotype pattern exhibited by psychiatric
patients. Such evidence will lead to personalized diagnosis for
each patient and, if appropriate, will also contribute to disease
prognosis.

However, there is yet much work to do in order to (i)
integrate clinical and “omics” data, (ii) integrate the networks
from different “omics” technologies, (iii) complete data analyses
from different levels of information, and (iv) compare different
networks from two or more diseases affecting one individual
to improve the description of his health/disease states. In this
regard, the concept of “gestaltomics” will be developed by a better
understanding of complex Systems Biology.
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