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Abstract

Introduction:  This study aimed to develop a method for discriminating cigarette brands based on 
the profiles of volatile components extracted from the tobacco fraction of the finished cigarettes to 
authenticate branded cigarettes of unknown origin.
Methods:  An analytical method comprising direct thermal desorption coupled with gas 
chromatography-quadrupole time-of-flight mass spectrometry was developed for acquiring vola-
tile profiles of cigarettes. About 290 samples of commercially available cigarettes were analyzed. 
Within this batch, 123 samples represented four popular cigarette brands. They were selected for 
in-depth characterization. Multivariate analysis was used to investigate the interrelations among 
volatile compounds of cigarettes and to identify characteristic markers for the cigarette discrimin-
ation. Supervised pattern recognition techniques were used for designing classification models.
Results:  Principal component analysis covering all detected volatiles allowed the differentiation of cig-
arettes based on the brand. A number of 56 volatile components were identified as markers with high 
discrimination power. These compounds were used for establishing classification models. A method 
of soft independent modeling of class analogy developed for the four studied cigarette brands proved 
to be efficient in the classification of unknown cigarettes, with accuracy between 95.9% and 100%.
Conclusions:  The data evaluation by soft independent modeling of class analogy was highly ac-
curate in classification of unknown cigarettes with a low rate of false positives and false negatives. 
The developed models can be used for discrimination of genuine from non-genuine products with 
high level of probability.
Implications:  Profiling of volatiles, which is commonly used for authentication of different food 
commodities, was applied for the characterization of cigarette tobacco for the purpose of authen-
tication a cigarette brand. Volatile components with a high discrimination power were identified 
by means of multivariate statistical methods and used for establishing of a classification model. 
The classification model was able to discriminate genuine from non-genuine cigarettes with a high 
level of prediction accuracy. This model could be a powerful tool for tobacco control to judge the 
authenticity of cigarettes.

Introduction

Tobacco is a very complex matrix consisting of a large number of 
different substances across multiple chemical classes and wide con-
centration ranges.1,2 The physical and chemical properties of tobacco 

leaves are influenced by genetics, growing conditions, weather con-
ditions, plant diseases, harvesting, post-harvesting procedures (such 
as curing, aging, and fermentation), and manufacturing.3 An essen-
tial step of the manufacturing is addition of additives, particularly 
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flavorings.1 The flavor specialists have the task of improving and 
modifying the tobacco aroma and taste to fit the expectation of 
the consumer. Just as the blends and types of tobaccos used are 
determining factors in the design of a product, the flavorings, which 
are added, greatly influence the quality and acceptability of the fin-
ished product.4,5 It is obvious that manufacturers aim for a high level 
of recognition of their products by the consumer and put, therefore, 
a lot of attention to maintaining their quality from batch to batch. 
It can be assumed that the composition of volatile compounds of a 
finished tobacco product is specific for the individual product and 
thus profiling of volatiles can be a useful tool for discrimination of 
different tobacco products.

Various analytical methods have been reported for the deter-
mination and quantification of volatile components in tobacco. 
These methods generally comprise sample preparation methods 
such as supercritical fluid extraction, simultaneous distillation and 
extraction, steam distillation, dynamic and static headspace ex-
traction, solid phase microextraction and thermal desorption (TD) 
usually followed by gas chromatography–mass spectrometry (GC-
MS) analysis.6–12 TD is widely used for the analysis of volatile and 
semi-volatile organic compounds by GC-MS in a variety of sample 
matrices and over wide concentration ranges.13,14 It offers the ad-
vantages of simplicity, speed, economy, and sensitivity of analysis of 
solid and liquid samples, compared to other extraction techniques 
TD achieves higher extraction yields and less discrimination between 
different classes of volatile compounds.15

Several studies applied profiling of volatiles for the differen-
tiation of tobacco leaves according to their origin.16,17,18 However, 
the application of profiling of volatiles for discriminating cigarette 
brands has not been published yet. The goal of this work was to 
develop a robust, simple, and automatic analytical method for pro-
filing of tobacco volatiles and to establish a classification model 
for selected cigarette brands to judge with a high level of certainty 
whether or not cigarettes of these brands are genuine products. The 
work was divided into different phases. The first phase focused on 
the identification of volatile constituents with high discrimination 
power by applying multivariate statistical methods. The second 
phase concerned the development of a classification model, which 
accepts cigarette samples from the target class, while the probability 
of accepting nontarget samples is minimized. In the final phase, the 
classification model was validated by the analysis of independent 
samples belonging to both the target class and samples of other cig-
arette brands. The latter served as proxies of counterfeit products.

Methods

Samples
Samples of the four target cigarette brands (A, B, C, and D), manu-
factured by three producers (P01, P02, and P03), were collected at 
licensed tobacconists in Europe. Each package was sampled in a dif-
ferent location to avoid duplicity of samples and to assure that a rep-
resentative sample set was obtained. Thirty-three cigarette packages 
of brand A manufactured by producer P01 were collected in 17 coun-
tries (Austria, Belgium, Croatia, Czech Republic, Estonia, Finland, 
France, Germany, Greece, Italy, Latvia, Portugal, Serbia, Slovakia, 
Slovenia, Spain, and Sweden). Twenty-five cigarette packages of 
brand B manufactured by producer P02 were purchased in 12 coun-
tries (Austria, Belgium, Czech Republic, Finland, Germany, Italy, the 
Netherlands, Portugal, Serbia, Slovakia, Spain, and Switzerland). 
Forty-three cigarette packages of brand C manufactured by 

producer P03 were collected in 16 countries (Austria, Belgium, 
Czech Republic, Estonia, France, Germany, Hungary, Italy, Latvia, 
Lithuania, Luxemburg, Portugal, Serbia, Slovakia, Spain, and 
Switzerland), and 22 cigarette packages of brand D manufactured 
by producer P02 were obtained from 10 countries (Austria, Belgium, 
Czech Republic, Germany, Latvia, the Netherlands, Spain, Sweden, 
Switzerland, and United Kingdom). In addition, 167 packs of cig-
arettes, comprising 114 other cigarette brands were collected in 
Europe for the purpose of validating the discrimination power of the 
developed model. The whole sample set consisted of 290 packs of 
cigarettes obtained in 2016 and 2017 from 28 European countries. 
Details on sample distribution based on country of purchase can be 
found in Supplementary data 1.

The research cigarette 3R4F, obtained from Tobacco-Health 
Research, University of Kentucky (Lexington, KY), was used as a 
quality control sample.

Reagents and Material
Isotopically labeled 2-ethylphenol-D10 was purchased from CDN 
Isotopes (Quebec, Canada). A  spiking solution of the isotopically 
labeled standard of about 30 µg/mL was prepared gravimetrically 
in methanol. Methanol of LC-MS grade was obtained from VWR 
(Leuven, Belgium).

Equipment and Instrumentation
An automatic analytical syringe eVol (SGE Analytical Science Pty. 
Ltd., Ringwood, Austria) was used for spiking samples with the iso-
topically labeled standard.

The used direct TD gas chromatography-quadrupole time-of-
flight mass spectrometry (GC/Q-TOF-MS) system consisted of a 
GC 7890A (Agilent Technologies, Santa Clara, CA) equipped with 
a cooled injection system, a programmable temperature vaporizing 
inlet (Gerstel, Mülheim an der Ruhr, Germany) and a TD unit (TDU, 
Gerstel) operating automatically in conjunction with a MultiPurpose 
Sampler (MPS, Gerstel). The GC was coupled to a 7200 Accurate 
Mass Q-TOF MS system (Agilent Technologies). Operation of the 
instrument was controlled by MassHunter GC/MS Acquisition soft-
ware, version B.07.03.2129 (Agilent Technologies) and Maestro 1 
software, version 1.4.31.10/3.5 (Gerstel).

Analytical Method
For the preparation of test samples, three randomly selected cigar-
ettes were removed from each cigarette package. The tobacco con-
tained in the cigarette sticks was separated from the cigarette paper 
and filter and ground and homogenized in a mortar under cooling 
by liquid nitrogen to prevent loss of volatile compounds. A volume 
of 5 µL of isotopically labeled standard solution was pipetted into a 
glass micro-vial insert and a portion of 30 mg tobacco sample was 
directly weighed over it. The micro-vial was inserted into an empty 
glass TD tube for analysis.

Splitless TD was realized by ramping the TDU from 20°C held 
for 0.1 minute to 100°C at 30°C/min held for 15 minutes with a he-
lium purge flow of 100 mL/min. Volatile compounds were trapped 
in the programmable temperature vaporizing inlet on a Tenax TA 
packed liner at 15°C. The trapped compounds were transferred 
onto the HP-5MS GC column (30 m × 250 µm × 0.25 µm; Agilent 
Technologies) in split mode, with a split ratio of 15:1, while pro-
gramming the programmable temperature vaporizing inlet from 
15°C held for 0.8 minutes to 270°C at 12°C/s held for 30 minutes. 
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The GC oven was programmed from 45°C (held for 2 minutes) to 
210°C at 4°C/min further to 300°C at 10°C/min (held for 5 min-
utes). Helium was used as a carrier gas at 1.0 mL/min constant flow 
rate. The transfer line temperature was set at 300°C. The Q-TOF-MS 
was operated in electron ionization mode at 70 eV ionization en-
ergy, except for the time window from 23.25 to 23.95 minutes, when 
nicotine was eluted. During this period, the ionization energy was 
reduced to 25 eV. The data acquisition rate was 5 Hz in 2 GHz ex-
tended dynamic range mode for the mass range of m/z 45–450.

A quality control sample was included in each sample batch con-
sisting of maximum 15 samples together with two blank samples.

Data Analysis
Chromatograms were first subjected to deconvolution, an auto-
matic peak detection and component identification using Mass 
Hunter Unknown Analysis (Agilent Technologies). On average, 461 
components were automatically detected by the software in each 
sample. Retention time shifts, which were for the whole period of 
the study below 0.1 minute, were compensated by mass spectra-
based peak alignment. Hence, data of each sample were imported to 
Mass Profiler Professional (Agilent Technologies) for data alignment 
and data filtering. Data filtering was carried out via frequency-of-
occurrence analysis (components found in only one or few samples 
might be caused by wrongly or inconsistently detected compounds), 
sample variability, and analysis of variance. Further reduction of 
the data was performed by plotting a cumulative sum of squares 
of all explained variables (R2VX) and cumulative sum of squares of 
model prediction errors (Q2VX) obtained by principal component 
analysis (PCA). Those components, which were poorly explained or 
predicted by the model, were removed.

Additional data analysis was carried out by using XCMS Online 
(Scripps Research Institute), a cloud-based informatics platform de-
signed to process and visualize mass-spectrometry data. In this re-
spect, data processing consisted of deconvolution, peak detection, 
alignment, and detection of features. A feature represents a peak in 
the chromatogram and is defined as a molecular entity with a unique 
mass and retention time. The XCMS Online platform was used to 
perform multivariate data processing, such as two-group pair com-
parisons to identify significant differences between two groups of 
samples, and meta-analysis to identify shared and different features 
between four groups of samples.19,20

Classification Method
Soft independent modeling of class analogy (SIMCA) is a classifi-
cation method based on disjoint PCA modeling.21 PCA is a widely 
used data analysis technique that allows reducing the dimension-
ality of the system while preserving information on the variable 
interactions. PCA transforms the original variables into a set of 
linear combinations, the principal components (PCs), which cap-
ture the data variability, are linearly independent and weighted 
in decreasing order of variance coverage.22 In SIMCA, each of 
the classes (cigarette brands) is modeled separately by PCA. The 
concept of SIMCA is to build a confidence limit for each cigar-
ette brand with the help of PCA and then to project an unclassi-
fied or unknown sample into each PCs space. On the basis of the 
residual variation of each class, the distance to the model of each 
observation can be computed. The final classification of an un-
known sample is obtained comparing its residual variances to the 
residual variance within each class through an F-test. The critical 
limit for the distance to the model is based on the F-distribution 

using a 95% confidence interval. More details on the SIMCA 
modeling can be found in the literature.21,23,24

Before PCA, data were preprocessed by means of mean-centering, 
scaling to unit variance and logarithmic transformation.

Software
Mass Hunter Qualitative Analysis, version B.07.00 (Agilent 
Technologies); Mass Hunter Unknowns Analysis, version B.07.01 
(Agilent Technologies); Mass Hunter Quantitative Analysis for 
QTOF, version B.07.01 (Agilent Technologies); Mass Profiler 
Professional, version 12.5 (Agilent Technologies); and XCMS, ver-
sion v3.5.1 (Scripps Research Institute, La Jolla, CA) were used for 
data analysis. Multivariate statistics were carried out using SIMCA, 
version 14.1.0.2017 (MKS Umetrics, Malmo, Sweden). The mass 
spectra of measured peaks were compared with mass spectra in 
NIST spectral library, version 2.0 2011 (Gaithersburg, MD).

Results

Performance of the Analytical Method
The performance of the analytical method for the analysis of vol-
atiles extracted from cigarette tobacco was validated. Method 
performance parameters, such as repeatability and intermediate 
precision, were evaluated from repeated analysis of quality control 
samples for 45 randomly selected compounds eluting between re-
tention time of 5.1–44.1 minutes. Repeatability expressed as the 
relative standard deviation of absolute responses of nine consecutive 
measurements varied between 5.8% and 18.2%. Intermediate pre-
cision was calculated based on 18 measurements acquired within 
a 2-month period and expressed as the relative standard deviation 
of absolute responses. Intermediate precision ranged between 5.8% 
and 21.2%. Details can be found in Supplementary data 2.

Several quality control tools were used to monitor the variability 
of measurement. The absolute responses of the isotopically labeled 
standard added to each test sample were plotted in quality control 
charts to detect instrument problems and identify potential trends. In 
addition, quality control charts were kept for five selected compounds 
(2(5H)-furanone, benzyl alcohol, solanone, megastigmatrienone, 
and neophytadiene) measured in the quality control sample analyzed 
together with each batch of samples. Thresholds for quality control 
were set based on the relative standard deviation obtained for the 
particular compound during initial precision studies. The warning 
limit was equal to twice the standard deviation, whereas the action 
limit corresponded to three times the standard deviation. Examples 
of quality control charts can be found in Supplementary data 3.

All collected samples were analyzed in random order over a 
period of 8 months. Example chromatograms of the volatile fraction 
extracted from samples of the four cigarette brands by application of 
the described method are shown in Supplementary data 3.

Discrimination of Cigarettes Based on the Profile of 
Volatiles
PCA was performed to investigate any possible clustering of samples 
according to cigarette brand. The PCA model constructed from the 
entire preliminary data set was very poor, indicating a high amount 
of data with little discrimination power. However, the PCA score 
plot revealed a grouping of samples in clusters based on the cigar-
ette brand and demonstrated that there are significant differences in 
the profiles of volatiles between different cigarettes. Data filtering 
was applied to reduce the data noise, to remove all non-relevant 
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information from the data matrix, and to keep only data with high 
discrimination power. The data were reduced to 75 variables. The 
PCA model consisted of nine PCs and captured 80.4% of total vari-
ance; the first and second components captured 41.1% of variance 
(Supplementary data 5). The total variation predicted by the model 
(Q2 cumulative) was 60.4%. Characterizing compounds were identi-
fied for each cigarette brand from PCA score plots and loading plots.

In addition, two-group pair comparisons were carried out to 
investigate the difference between volatile profiles of two cigarette 
brands. This method identified features, whose relative intensities 
are significantly different between two brands. The differences in 
volatile profiles are visualized by cloud plots. Supplementary data 
6 presents as an example the cloud plot for cigarette samples of 
brand A and brand B. Characterizing compounds were then iden-
tified by comparing the cloud plots with total ion chromatograms. 
The proper selection of discriminating components was corrobor-
ated by the additional second-order analysis called “meta” analysis. 
This method is useful for multiple group comparison. The outcome, 
illustrated in a Venn diagram (Supplementary data 7), enabled the 
selection of features that are unique for each of the cigarette brands 
(represented by the not overlapped areas in the Venn diagram) and 
to identify features common for two or more cigarette brands (rep-
resented by the overlapping areas in the Venn diagram).

A list of markers (characterizing compounds) was set up for each 
target cigarette brand by combining results from PCA, two-group 
pair analysis and meta-analysis. Cigarettes A  were characterized 
by 20 compounds, cigarettes B by 17 compounds, cigarettes C by 
14 compounds, and cigarettes D by 16 compounds. The majority 
of these compounds were tentatively identified by comparing mass 
spectra with the NIST library and based on the linear retention 
indexes of compounds (Table 1). The ratios of absolute responses of 
these compounds to the absolute response of the isotopically labeled 
standard were further used for developing classification models.

Classification of Cigarettes According to Brand
The sample set consisting of cigarettes A, B, C, D was split into two 
groups—a set of training and a set of prediction samples. The training 
sample set was used for model generation and consisted of 15–20 
randomly selected samples of each brand. Four PCA disjoint models 
were built (Figure 1), each PCA represents one brand. In detail, three 
PCs modeled cigarettes of brand A and captured a total variance of 
83.6%. Cigarettes brand B was characterized by the PCA model con-
sisting of two PCs of a total variance of 72.1%. PCA models of three 
PCs characterized cigarette brand C (77.9% of total variance) and 
cigarette brand D (74.7% of total variance). One of the limitations 
of the experimental setup was the lack of confirmed genuine sam-
ples, which bears the risk of weakening the models with data of po-
tentially counterfeit products. Hotelling’s T2 range plots (calculated 
for the range of components) were used to evaluate the homogeneity 
of sample sets and to detect potential outliers. Hotelling’s T2 plot 
did not reveal any extreme outliers in the training sample set, which 
could unnecessarily alter the classification results, and samples were 
found to be rather consistent (Supplementary data 8).

The SIMCA modeling scheme was applied to the prediction 
sample set to evaluate the accuracy of model predictions. The pre-
diction sample set included independent (not included in the setup 
of the models) cigarette samples of the four targeted cigarette 
brands plus cigarettes of different other cigarette brands collected in 
Europe. The prediction sample set consisted in total of 220 samples 
(13 brand A, 10 brand B, 23 brand C, 7 brand D, and 167 other 

brands). Samples with a probability of membership less than 5% 
(less than 0.05) are considered to be outliers (outside 95% confi-
dence level) and not belonging to the model (class). The performance 
of the model is expressed by the parameters sensitivity and speci-
ficity, which characterize the overall model accuracy. Sensitivity is 
defined as the percentage of samples correctly assigned by the model 
to the respective cigarette brand (true positive rate). Specificity is the 
percentage of samples correctly classified as not belonging to the 
respective cigarette brand (true negative rate). Accuracy represents 
the rate of correctly classified samples (sum of both true positive 
and true negative samples) among the performed classification tests. 
Sensitivity and specificity values of 100% were obtained for brand 
A. All cigarettes of brand A were correctly classified by the SIMCA 
model and were found similar to the rest of cigarettes A from the 
training sample set. All samples of other brands were determined as 
outliers and rejected by the model. Nine of 10 samples of brand B 
were correctly identified by SIMCA, whereas 7 of the 210 non-brand 
B samples were wrongly classified. Sensitivity and specificity for cig-
arette B were determined to 90% and 96.7%, respectively and an 
overall accuracy of 96.4%. Slightly lower sensitivity of 78.3% was 
observed for cigarettes C, where five of twenty-three samples were 
false negatives. However, specificity and total accuracy were 98.1% 
and 95.9%, respectively. Similarly, lower sensitivity of 85.7% was 
observed for cigarettes D. In this case, one of seven samples was mis-
classified. Specificity and total accuracy reached 97.7% and 97.3%, 
respectively.

Discussion

Tobacco is an agricultural product and as such subjected to geo-
graphical and seasonal influences on its composition. Manufacturing 
of fine cut tobacco adds additional variability to the product. 
Cigarette manufacturers aim to fabricate products with constant 
quality in terms of physical and sensorial properties. This is achieved 
by blending of tobacco and by addition of additives, which might 
compensate for deficiencies of the raw tobacco. The types and 
amounts of additives added to fine cut tobacco for maintaining a 
product-specific taste were considered rather stable. To account for 
the variability that can be expected in a finished branded product, 
sampling was performed in a way that assured the coverage of dif-
ferent production batches.

A limitation of the sampling of branded cigarettes from retail is 
the lack of certainty on the authenticity of the sampled products. 
However, the risk of unintendedly generating models based on coun-
terfeit products was reduced by putting sampling on a broad geo-
graphical and temporal footage via sampling at licensed tobacconists 
distributed over a number of different European countries over a 
period spanning almost 2 years, which makes the inclusion of a large 
number of counterfeit products unlikely. In addition, statistical tests 
were performed for identifying outliers among the samples used for 
model generation.

The second limitation concerned the absence of possibilities to 
acquire counterfeits of branded cigarettes by lawful means. In as-
suming that counterfeiters will hardly be able to generate the same 
tobacco and additive blends as legal producers use for their branded 
products, cigarettes of other cigarette brands than the four target 
brands, comprising a multitude of tobacco and additive combin-
ations, were used as a replacement for counterfeited target cigarettes.

The main goal of the developed analytical method was to obtain 
a comprehensive profile of volatile components of cigarette tobacco 
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to investigate the possibility for discrimination and classification of 
selected cigarette brands (A, B, C, D) by the means of supervised pat-
tern modeling techniques. Direct TD hyphenated to GC provides a 

fully automated solvent-less sample preparation technique consisting 
of desorption/extraction, pre-concentration, and GC injection. This 
method was found to be fit for the purpose providing a broad profile 

Table 1.  Details of Characterizing Volatile Compounds (Markers) Used for SIMCA Classification Modeling for Cigarette Brand A, B, C, D

No. Compound name Cigarette brand tR [min] CAS no. LRI LRI (lit) m/z

1 Pyrazine, 2-methyl* B; D 6.07 109-08-0 825 825 94; 64
2 Butanoic acid, 3-methyl-* C; D 6.55 503-74-2 843 840 60; 87; 101
3 3-Furanmethanol C 6.87 4412-91-3 855 835 98; 97; 81
4 Propionic acid, 3-methoxy B 7.98 2544-06-1 897 851 74; 58; 45
5 2(5H)-Furanone B 8.55 497-23-4 915 918 55; 84; 54
6 Pentanoic acid C 8.83 109-52-4 924 924 60; 73
7 2-Furanmethanol, 5-methyl B 9.88 3857-25-8 956 953 112; 111; 95
8 Benzaldehyde* B; D 10.00 100-52-7 960 960 105; 77; 51
9 α-Methylstyrene A 10.73 98-83-9 982 980 118; 117; 103

10 1-Hexanol, 2-ethyl- B; D 12.37 104-76-7 1029 1020 57; 70; 83
11 2-Cyclopenten-1-one, 2-hydroxy-3-methyl-* A 12.50 80-71-7 1033 1034 112; 69; 83
12 Ethanone, 1-(1H-pyrrol-2-yl)-* D 13.57 1072-83-9 1063 1063 94; 109; 66
13 Acetophenone* C 13.67 98-86-2 1066 1066 105; 77; 51
14 2-Pyrrolidinone A 13.83 616-45-5 1070 1069 85; 84; 86
15 Pyrazine, tetramethyl-* A 14.41 1124-11-4 1087 1087 136; 54; 137
16 Pyridine, 4-(1,1-dimethylethyl)- B 14.44 3978-81-2 1088 1073 120; 135; 92
17 Phenol, 2-methoxy* A 14.52 90-05-1 1090 1089 124; 81; 85
18 1,6-Octadien-3-ol, 3,7-dimethyl-* B 14.89 78-70-6 1100 1100 93; 71; 121
19 Ehtanone, 1-(3-pyridinyl)- B 15.22 350-03-8 1110 1105 106; 78; 121
20 Maltol* A 15.43 118-71-8 1116 1114 123; 71; 55
21 Phenylethyl alcohol* A 15.51 60-12-8 1118 1118 91; 92; 65
22 3-Pyridinemethanol B 15.94 100-55-0 1130 1122 109; 108; 80
23 4H-Pyran-4-one, 2,3-dihydro-3,5-dihyroxy-6-methyl A 16.74 28564-83-2 1152 1151 144; 101; 73
24 l-Menthone* B 16.82 89-80-5 1154 1155 139; 154; 112
25 2(1H)-Pyridinone, 5,6-dihydro- A 17.10 6052-73-9 1162 1160 68; 97; 69
26 D-Menthone* B 17.19 1196-31-2 1165 1164 139; 112; 154
27 Acetic acid, phenylmethyl ester A 17.20 140-11-4 1165 1160 108; 91; 79
28 Menthol* B 17.50 89-78-1 1174 1172 138; 123; 109
29 1,3-Cyclohexadiene-1-carboxaldehyde, 2,6,6-trimethyl- A 18.45 116-26-7 1200 1202 107; 121; 150
30 Benzeneacetic acid, ethyl ester* A 20.02 101-97-3 1246 1247 91; 92; 164
31 Benzaldehyde, 4-methoxy* D 20.33 123-11-5 1255 1252 135; 136; 107
32 Anethole* D 21.40 104-46-1 1286 1286 147; 148; 117
33 Cyclohexanol, 5-methyl-2-(1-methylethyl)-, acetate* B 21.70 16409-45-3 1295 1294 95; 123; 81
34 4-Acetylanisole* A 22.60 100-06-1 1322 1325 150; 135; 77
35 Piperonal* D 23.07 120-57-0 1337 1333 149; 150; 121
36 Triacetin* C 23.68 102-76-1 1356 1350 145; 116; 115
37 Vanillin* A 25.10 121-33-5 1399 1400 151; 152; 123
38 trans-Geranylacetone* D 26.78 3796-70-1 1454 1453 107; 151; 136
39 2,6-Di-tert-butylbenzoquinone C; D 27.37 719-22-2 1473 1472 205; 220; 165
40 1-Dodecanol D 27.41 112-53-8 1474 1473 55; 69; 83
41 β-Ionone* C 27.83 14901-07-6 1488 1488 117; 123; 178
42 2,6-Di-tert-butyl-4-methylphenol D 28.63 128-37-0 1515 1515 220; 205; 177
43 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl- A 29.13 17092-92-1 1532 1538 111; 137; 109
44 Megastigmatrienone I A; C 30.56 38818-55-2 1581 1588 175; 148; 190
45 Megastigmatrienone II A; C; D 31.89 38818-55-2 1627 1623 175; 148; 190
46 6,10-Dodecadien-1-ol, 3,7,11-trimethyl-, (E)-(±)- B 32.30 20576-54-9 1642 1654 123; 95; 69
47 Allyl α-ionone C 33.02 79-78-7 1668 1664 218; 177; 175
48 Unknown (isoprenoid) D 33.43  1683  197; 212; 155
49 1H-Indene, 2,3-dihydro-1,1,3-trimethyl-3-phenyl- B; D 34.43 3910-35-8 1719 1716 221; 143; 128
50 Furan, 2-[(2-ethoxy-3,4-dimethyl-2-cyclohexen-1-ylidene)methyl]- C 34.45 55162-49-7 1720 1723 232; 175; 121
51 Allyl ionone C 34.94 79-78-7 1739 1734 232; 217; 135
52 Unknown (isoprenoid) D 35.30  1752  173; 188; 201
53 Benzyl benzoate* B 35.68 120-51-4 1766 1765 105; 194; 91
54 2-Pentadecanone, 6,10,14-trimethyl- C 37.74 502-69-2 1846 1843 58; 59; 71
55 Benzeneacetic acid, 2-phenylethyl ester* A 39.51 102-20-5 1917 1919 104; 91; 105
56 3-(4,8,12-Trimethyltridecyl) furan A 40.77 54869-11-3 1969 1971 82; 81; 95

LRI = calculated linear retention index; LRI (lit) = linear retention index taken from databases25–28; m/z = m/z value selected from the compounds mass spectra used 
as quantifier (bold print) and qualifier ions; tR = retention time.
*Compound used as a cigarette additive.
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of volatile compounds contained in unburned tobacco. The stability 
of volatile compounds was evaluated when optimizing TD. A lack of 
stability was not observed under the selected conditions. However, it 
has to be stated that the assay did on purpose not focus on the most 
volatile compounds, as their content is likely altered during trans-
port, storage, and manipulation of the cigarette sticks before instru-
mental analysis. The fine grinding of the cigarette tobacco provided 
not only a homogenous sample but also a high surface to volume 
ratio, which facilitated equilibration with laboratory climatic condi-
tions. Conditioning of the sample in a climatic chamber was there-
fore not required. The optimized method was characterized by good 
repeatability and intermediate precision. It was also found that the 
measurement process does not add significant variability to the vari-
ability of the profile of volatiles of cigarette samples.

Several software platforms were applied for data treatment and 
statistical analysis. Multivariate analysis was used to investigate 
the interrelations among a set of variables to identify character-
izing components for discrimination of cigarette brands and to de-
pict important flavor-related compounds. PCA using preliminary 
selected volatile compounds clearly differentiated groups of cigar-
ettes according to the cigarette brand. The first PC discriminated 
cigarette brand A  from C (explaining 26.2% variation), whereas 
the second PC (14.9% variation) separated brand B and D from 
A  and C (Supplementary data 4A). Discrimination of brand B 
and C was partly achieved by the third PC (Supplementary data 
4B). Cigarettes brands B and D were made by the same pro-
ducer and their volatile profiles were not as distinct as for other 
brands. However, a pair-analysis performed by XCMS Online 
revealed flavor components, which were unique for each brand 
(Supplementary data 9).

Twenty-six compounds of fifty-six selected markers were found 
in the cigarette ingredients list as a flavoring agent.29 Compounds 
used as a cigarette additive are marked in Table 1. Flavorings are 
frequently used to provide a specific sensorial characteristic to a 
product and to improve the recognition of this product by consumers. 
Therefore, it could be expected that some of the flavoring additives 
would be among the markers for discrimination of cigarettes.

The developed SIMCA model was characterized by a high level of 
accuracy of class prediction of unknown cigarettes. Misclassifications 
occurred rarely, despite tests were performed on a large number 
of different cigarette samples obtained from the European market. 
However, an extension of model sensitivity assessment is planned for 
the future work. The established SIMCA model was considered effi-
cient in identifying whether a tested cigarette is branded as A, B, C, or 
D, or neither of those brands. Consequently, the application of the de-
veloped model to an unknown, non-genuine cigarette sample, would 
have led with high probability to the conclusion that this sample is 
not authentic. In this way, the developed SIMCA model could be a 
powerful tool for tobacco control to judge the authenticity of cigar-
ettes. If needed, the classification can be extended to other cigarette 
brands in a similar way as demonstrated in this article.

Supplementary Material
Supplementary data are available at Nicotine and Tobacco Research online
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Figure 1.  Disjoint principal component analysis (PCA) score plots of soft independent modeling of class analogy for cigarettes A (PC1 51.5%, PC2 18%), cigarettes 
B (PC1 50.3%, PC2 21.7%), cigarettes C (PC1 47.7%, PC2 18.2%), cigarettes D (PC1 32.1%, PC2 26.5%).
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