Promising Pharmacological Treatment of Stimulant Use Disorder: Time for Translation to Clinical Practice

Adam Bisaga M.D.

Professor of Psychiatry, Columbia University, New York, USA

International Conference on Drug Prevention, Treatment and Care – Inspiration and Direction, ISUUP, July 2019

Psychostimulant Use Disorder (PSUD)

- Worldwide, 73 million people used illicit (psycho)stimulants: twice as many as those who used opioids
- Some will develop a PSUD, which causes significant health and psychosocial problems
- Only small portion of people with PSUD have access to or receive treatment (large regional disparities)

Illicit Stimulant Users

PSUD: Treatment

- Almost all patients who are in treatment receive only psychosocial interventions
 - In contrast to treatment of opioid use disorder where medications are a standard of care
- Psychosocial interventions (e.g., CBT)
 - limited effectiveness (for frequent users and cognitively impaired individ.)
 - poor treatment engagement
 - expensive to deliver

Current treatment framework for PSUD

Inpatient Treatment Residential Treatment Outpatient Treatment

- Medical/psychiatric stabilization "detox"
- Short-term medication use
- No effect on drug use, high relapse rates

- Drug rehab or TC model
- Only psychosocial interventions, high cost
- Large decrease of use, but high relapse rates

- Psychosocial-only, "abstinence-based"
- Low cost
- Small reductions of use

Addiction: Medical Framework

- Addiction is an acquired bio-behavioral brain disorder
 - It is more likely to develop in people with a genetic predisposition
 - In vulnerable individuals, taking drugs changes the brain
 - There is an abnormal functioning of brain circuits involved in processing of motivation, memory, reward, and decision making
 - Abnormal functioning is responsible for symptoms
 - Disturbances of mood, cognition, and decision-making
 - Abnormal reactivity to stress and environmental cues
 - Overwhelming craving and difficulty with controlling behavior
 - Impaired insight and the impaired ability to care for self
 - Once developed, addiction has a chronic and relapsing course
 - Abnormal brain responses persist for many months/years

Addiction: Treatment Components

PSUD: Pharmacological Treatments

- Substantial research effort went to finding medications that could improve outcomes of treatment for PSUD
- At present time there is no widely accepted medication to play this role but there are several candidate medications that were found effective when tested in quality controlled clinical trials
- The most effective approach to date is agonist-based treatment

Agonist Approach: Rationale

 Both cocaine and ATSs acutely increase brain levels of dopamine, serotonin, and noradrenaline producing euphoria and other physical effects

However, chronic users (PSUD) have reduced functioning of DA system

- These changes may be responsible for the continuing use and relapse
 - Low energy, low mood/anhedonia, ☐ cognition/decision making, ☐ impulsivity
- Correcting those abnormalities can reduce symptoms and help reduce use
 - Agonist-type medication increase DA/NA activity in the brain (pfc)

Agonist Approach: Rationale (2)

- Several agonist medications are used for treatment of other disorders
 - Methylphenidate (Ritalin, Concerta), Amphetamines (Adderall), modafinil
 - High comorbidity and overlapping neurobiology between PSUD and ADHD
- Supervised/medical use of a drug-like substance can stabilize and keep patients in treatment and access other services and medical interventions
- Offering medications may motivate patients for additional treatment
- Patients accept agonist, positive subjective effects promote medication adherence
- Stimulant medication may improve cognitive functioning and improve outcome of psychosocial interventions

Agonist: assuring treatment safety

- Most potent agonists are classified as controlled substances because of the potential for abuse and diversion
 - Treatment must include plan to minimize this risk
 - Similar concerns exist with opioid agonists
- XR preparations have slow onset of action and slower rate of elimination providing stable blood level
 - Less likely to be abused and better adherence
- There is potential for adverse cardiovascular effects and the need to screen out individuals with cardiovascular disease

Agonist Strategy: Meta-analysis 2019 (Tardelli et al., 2019)

- Systematic review and a meta-analysis of RCT that used agonists for the treatment of Cocaine or Amphetamine-type PSUD
- Medications: scheduled prescription stimulants: modafinil, methylphenidate, or an amphetamine-type medication (dexamphetamine, mixed amphetamine salts and lisdexamphetamine)
- Outcome Measure: sustained abstinence from the drug (2-3 wks)
 - Sustained abstinence, particularly at the end of treatment, is an outcome strongly related to cocaine use during follow-up (Carroll et al., 2014)

Sustained Abstinence: Cocaine vs. Amphetamine Use Disorder (Tardelli et al., 2019)

Sustained Abstinence: Effect of medication (Tardelli et al., 2019)

	Psychostimu		Placel			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.3.1 Prescription Amphetan							
Grabowski 2004	24	54	7	40	8.1%	2.54 [1.22, 5.30]	
Levin 2015	20	83	3	43	4.5%	3.45 [1.09, 10.98]	
Mariani 2012	13	39	7	42	7.2%	2.00 [0.89, 4.49]	
Nuijten 2016	11	38	2	35	3.2%	5.07 [1.21, 21.27]	
3chmitz 2012	2	22	1	8	1.4%	0.73 [0.08, 6.97]	-
Shearer 2003	7	16	4	14	5.5%	1.53 [0.56, 4.15]	
Subtotal (95% CI)		252		182	30.0%	2.31 [1.52, 3.50]	•
Total events	77		24				
Heterogeneity: Tau² = 0.00; C	hi² = 3.57, df = 6	5 (P = 0.6)	61); I² = 0	%			
Fest for overall effect: Z = 3.95	5 (P < 0.0001)						
I.3.2 Modafinil							
Anderson 2009	22	138	7	72	7.3%	1.64 [0.74, 3.65]	 •
Inderson 2012 (Meth)	21	142	12	68	9.2%	0.84 [0.44, 1.60]	
Dackis 2005	10	30	4	32	5.2%	2.67 [0.94, 7.60]	•
Dackis 2012	11	135	4	75	4.8%	1.53 [0.50, 4.63]	
Heinzerling (2010)	9	34	10	37	7.7%	0.98 [0.45, 2.12]	
(ampman 2015	11	47	4	47	5.0%	2.75 [0.94, 8.02]	-
3chmitz 2012	1	20	1	8	1.1%	0.40 [0.03, 5.65]	
3chmitz 2014	9	22	10	18	9.1%	0.74 [0.38, 1.41]	
Subtotal (95% CI)		568		357	49.4%	1.22 [0.83, 1.77]	•
Fotal events	94		52				
Heterogeneity: Tau² = 0.08; C	•	$^{7}(P = 0.3)$	20); I² = 2	9%			
Fest for overall effect: $Z = 1.02$	2 (P = 0.31)						
.3.3 Methylphenidate							
Dürsteler-MacFarland 2013	3	30	3	32	2.9%	1.07 [0.23, 4.88]	
Konstenius, 2010	8	12	9	12		0.89 [0.53, 1.49]	
_evin 2007	8	53	9	53	6.6%	0.89 [0.37, 2.13]	
Subtotal (95% CI)		95		97	20.6%	0.90 [0.59, 1.38]	•
otal events	19		21				
Heterogeneity: Tau² = 0.00; C	•	2 (P = 0.9)	97); I² = 0	%			
Fest for overall effect: $Z = 0.48$	3 (P = 0.63)						
otal (95% CI)		915		636	100.0%	1.40 [1.05, 1.86]	•
Total events	190		97				
Heterogeneity: Tau² = 0.12; C		16 (P=	0.07); l² =	37%			0.01 0.1 1 10 10(
Fest for overall effect: Z = 2.31	(P = 0.02)						Favours Placebo Favours Psychostimulants
TOSTION OVERAIL CHECK. Z - 2.51	(,						

Agonist Strategy: Meta-Analysis 2019

- We found that:
 - Prescription psychostimulants were effective in promoting sustained abstinence in the treatment of PSUD, particularly Cocaine Use Disorder (low-quality evidence)
 - Prescription amphetamines were particularly efficacious on promoting sustained abstinence on patients with Cocaine Use Disorder (high-quality evidence)

Agonist Strategy for Cocaine UD: Cochrane 2016

Cocaine use

Sustained Abstinence

- ... evidence that a higher proportion of participants achieved sustained cocaine abstinence with psychostimulants than with placebo (low quality evidence, small benefit)
- In consonance with the efficacy of substitute treatment for heroin use and for nicotine dependence, the findings of this review suggest that psychostimulants are a promising treatment for cocaine dependence

Implementing medical model to treat patients with PSUD

- Attract patients into treatment and keep them engaged
 - Outreach work: offering food, shelter, and welcoming environment
 - Inpatient/residential services if stabilization is needed

Offer treatment

- Medications to help reduce craving and impulsivity, improve mood and cognition to decrease drug use/prevent relapse
- Supportive, friendly, and accepting therapeutic environment
- Therapy to change pathological behaviors and retain patients in treatment
- Connect with peer-support networks and recovery-oriented services
- Diagnose and treat co-occurring conditions
 - Other Substance Use Disorders (alcohol, opioids)
 - Psychiatric problems (depression, anxiety, PTSD, psychosis)
 - Medical problems (e.g., infections, dental, reproductive services)
- Collect evidence to test health and economic benefits of this model