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Abstract

IMPORTANCE Although longitudinal studies have reported associations between early life factors
(ie, in-utero/perinatal/infancy) and long-term suicidal behavior, they have concentrated on 1 or few
selected factors, and established associations, but did not investigate if early-life factors predict
suicidal behavior.

OBJECTIVE To identify and evaluate the ability of early-life factors to predict suicide attempt in
adolescents and young adults from the general population.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study used data from the Québec
Longitudinal Study of Child Development, a population-based longitudinal study from Québec
province, Canada. Participants were followed-up from birth to age 20 years. Random forest
classification algorithms were developed to predict suicide attempt. To avoid overfitting, prediction
performance indices were assessed across 50 randomly split subsamples, and then the mean was
calculated. Data were analyzed from November 2019 to June 2020.

EXPOSURES Factors considered in the analysis included 150 variables, spanning virtually all early
life domains, including pregnancy and birth information; child, parents, and neighborhood
characteristics; parenting and family functioning; parents’ mental health; and child temperament, as
assessed by mothers, fathers, and hospital birth records.

MAIN OUTCOMES AND MEASURES The main outcome was self-reported suicide attempt by age
20 years.

RESULTS Among 1623 included youths aged 20 years, 845 (52.1%) were female and 778 (47.9%)
were male. Models show moderate prediction performance. The areas under the curve for the
prediction of suicide attempt were 0.72 (95% CI, 0.71-0.73) for females and 0.62 (95% CI,
0.60-0.62) for males. The models showed low sensitivity (females, 0.50; males, 0.32), moderate
positive predictive values (females, 0.60; males, 0.62), and good specificity (females, 0.76; males,
0.82) and negative predicted values (females, 0.75; males, 0.71). The most important factors
contributing to the prediction included socioeconomic and demographic characteristics of the family
(eg, mother and father education and age, socioeconomic status, neighborhood characteristics),
parents’ psychological state (specifically parents’ antisocial behaviors) and parenting practices. Birth-
related variables also contributed to the prediction of suicidal behavior (eg, prematurity). Sex
differences were also identified, with family-related socioeconomic and demographic characteristics
being the top factors for females and parents’ antisocial behavior being the top factor for males.

CONCLUSIONS AND RELEVANCE These findings suggest that early life factors contributed
modestly to the prediction of suicidal behavior in adolescence and young adulthood. Although these
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Abstract (continued)

factors may inform the understanding of the etiological processes of suicide, their utility in the long-
term prediction of suicide attempt was limited.
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Introduction

Suicide is an important public health concern and the second leading cause of death among
individuals aged 15 to 29 years.1,2 A history of suicide attempt is a main factor of completed suicide.
Therefore, early identification of youth at risk for suicide attempt is critical to prevent suicide and to
reduce negative health, social, and economic consequences.3,4 A number of studies have reported
that proximal risk factors, such as bullying victimization,5 school performance,6 and cannabis and
alcohol use,7,8 are important factors for adolescent suicidal behavior. However, there is increasing
evidence suggesting that early life characteristics and exposures may have long-lasting influences on
the risk of suicidal behavior. In line with the developmental origins of health and disease
hypothesis,9,10 several epidemiological studies11,12 reported associations of a range of early life factors
with suicidal behavior in the lifespan.9,13 These include socioeconomic factors (eg, family
socioeconomic disadvantage, low parental education, low maternal age, and single parenthood at
childbirth),14-18 exposure to substance in pregnancy (eg, maternal smoking),19 poor fetal growth (eg,
low birth weight and fetal adversities),14,15,20 exposure to postnatal maternal depression21 and poor
parent-child interactions during infancy.22,23 For example, a study using the Christchurch Health and
Development Study reported that children of teenage mothers were 2-fold more likely to attempt
suicide in adolescence compared with children of older mothers.18 In another study using the Québec
Longitudinal Study of Child Development and the Avon Longitudinal Study of Parents and Children,
exposure to fetal adversities was associated with higher risk of attempting suicide by age 21 years.15 A
meta-analysis showed that low birth weight was associated with higher risk of suicidal ideation,
suicide attempt, and suicide mortality in the lifespan.16

However, owing to methodological limits of the statistical models used in prior studies (mainly
regression models), only a small number of risk factors have been jointly evaluated. This contrasts
with the current understanding of the etiological processes of mental disorders, argued to involve
hundreds of endogenous and exogenous factors in dynamic and constant interaction across complex
partially embedded networks.24,25 Additionally, although studies have identified several associations
between a range of early risk factors and suicide attempt later in life, it is unclear to what extent these
factors contribute to the prediction of suicide attempt. A statistical association quantifies the relation
between 2 observed variables, whereas a predictive model identifies the most parsimonious number
of variables enabling a good prediction of new observations.26 It is important to note that, even
when associations are longitudinal (ie, there is temporal precedence of the exposure on the
outcome) and strong (eg, have a large effect size), they do not inform on whether a given factor (or
set of factors) is useful to predict a new observation.27

Although many studies have established associations of some early life risk factors with suicide
attempt, we are unaware of studies investigating the predictive value of such risk factors and
simultaneously considering a large number of potential factors. This is a limitation, because
improving early prevention of suicide attempt relies on the capacity to accurately identify individuals
more likely to attempt suicide later in life. This limitation is not only theoretical. In a 2017
meta-analysis28 analyzing all the risk factors identified to be associated with suicidal thoughts and
behaviors in the last 50 years, none was found to reliably predict a future suicide attempt better
than chance.

Machine learning is a promising approach to optimize the prediction of future outcomes.29 As
most mental health disorders can be framed as classification problems (ie, distinguishing between
individuals who are affected or symptomatic vs those who are not affected or asymptomatic, or
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between individuals who attempted suicide or did not), machine learning techniques have recently
attracted the attention of mental health researchers with emerging fields of research, such as
computational psychiatry.30 Machine learning techniques allow researchers to simultaneously
consider hundreds of potential factors and determine, without prior assumptions, the most effective
and parsimonious algorithm to predict a new observation.

Using data from a large 20-year population-based longitudinal study, the aim of this study was
to test the extent to which we could predict suicidal attempt during adolescence and young
adulthood using a large number of early life factors assessed with parental reports and hospital
records. Findings could provide important information on the predictive ability of early life factors to
identify individuals who will attempt suicide 2 decades later, complementing the available evidence
from association studies.

Methods

Participants
Participants for this prognostic study came from the Québec Longitudinal Study of Child
Development (QLSCD), a representative longitudinal population-based cohort. The protocol of the
QLSCD was approved by the Institut de la Statistique du Québec, the institute that conducted the
study, and the St-Justine Hospital Research Center ethics committees. Written informed consent was
obtained from all participants. This study follows the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline for prediction
model development.

The QLSCD initially included 2120 singletons born in Québec, Canada in 1997 or 1998, selected
from the Québec Birth Registry using a stratified random procedure. Children were regularly
assessed from ages 5 months to 20 years.31 Owing to attrition, this study included 1623 participants
(77.6% of the initial cohort) with at least 1 assessment of suicide attempt between ages 13 and 20
years (Table 1).

Assessment of Suicidal Attempt
At ages 13, 15, 17, and 20 years, adolescents who answered positively to the question “In the past 12
months, did you ever seriously think of attempting suicide?” were then asked “In the past 12 months,
how many times did you attempt suicide?” (dichotomized as 0 vs �1).37 At age 20 years, lifetime
suicide attempt was additionally assessed with the questions “In your lifetime, have you ever been to
the emergency room (ER) because you tried to kill yourself?” and “In your lifetime, have you ever
been hospitalized after trying to kill yourself?” Questionnaires were provided in French or English
depending on respondent preference. Participants responding yes to any question were considered
as having attempted suicide.38,39

Assessment of Early Life Factors
We used a broad range of potential factors reported by parents when the child was aged 5 months,
together with factors extracted from hospital birth records. These potential factors are presented in
the eTable in the Supplement. We assessed 150 variables encompassing sociodemographic factors
as well as child, family, parental, and neighborhood characteristics. Perinatal child characteristics
included birth weight, prematurity, Apgar score, and neonatal hospitalization. Parenting and family
functioning characteristics included positive maternal interactions, assessed with 5 items from the
Parent Practices Scale,33 evaluating positive interactions between the mother and the child; family
socioeconomic status, assessed with an aggregate of 5 items regarding parental educational level,
parental occupation, and annual gross income; and family functioning, assessed with 7 items (eg, do
not get along well together) from the McMaster Family assessment34 administered to the mother.
Parental characteristics included parental age at childbirth, immigration status, and employment.
Parental mental health and behavior included anxiety, depression (measured using a short version of
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Table 1. Characteristics of the Participants Included in the Study Samplea

Characteristic

No. (%)

P valueb
Total
(N = 1623)

Females
(n = 845)

Males
(n = 778)

Low birth weight (<2500 g) 49 (3.0) 25 (3.0) 24 (3.1) .53

Perceived difficult temperament, mean (SD)c

Mother 2.7 (1.6) 2.7 (1.6) 2.7 (1.6)
.70

Missing 7 (0.4) 4 (0.5) 3 (0.4)

Father 2.9 (1.5) 2.8 (1.5) 2.9 (1.5)
.23

Missing 244 (15.0) 120 (14.2) 124 (15.9)

Positive interactions, mean (SD)d 9.0 (1.1) 9.0 (1.1) 9.0 (1.0)
.48

Missing 2 (0.1) 1 (0.1) 1 (0.1)

Family socioeconomic status, mean (SD)e 0.1 (1.0) 0.1 (1.0) 0 (1.0)
.30

Missing 6 (0.4) 3 (0.4) 3 (0.4)

Age at birth, mean (SD), y

Mother 29.4 (5.2) 29.5 (5.1) 29.3 (5.2)
.24

Missing 1 (0.1) 0 1 (0.1)

Father 32.3 (5.5) 32.1 (5.4) 32.4 (5.6)
.40

Missing 116 (7.1) 57 (6.7) 59 (7.6)

Family functioning score, mean (SD)f 1.7 (1.4) 1.7 (1.4) 1.7 (1.5)
.91

Missing 11 (0.7) 8 (0.9) 3 (0.4)

Nonintact family (single or blended) 327 (20.1) 176 (2.8) 151 (19.4)
.55

Missing 3 (0.2) 2 (0.2) 1 (0.1)

Maternal smoking during pregnancy 401 (24.7) 218 (25.8) 183 (23.5)
.30

Missing 9 (0.6) 5 (0.6) 4 (0.5)

Maternal mental health

Depression, mean (SD)g 1.4 (1.3) 1.3 (1.3) 1.4 (1.4)
.37

Missing value 6 (0.4) 2 (0.2) 4 (0.5)

Antisociality in adolescence score, mean (SD)g 0.8 (0.9) 0.8 (0.9) 0.9 (1.0)
.36

Missing 52 (3.20) 24 (2.8) 28 (3.6)

Paternal mental health

Depression, mean (SD)g 1.0 (0.9) 1.0 (0.9) 1.0 (0.9)
.22

Missing value 228 (14.0) 114 (13.5) 114 (14.7)

Antisociality in adolescence score, mean (SD)h 0.7 (0.9) 0.6 (0.9) 0.7 (0.9)
.07

Missing 233 (14.4) 113 (13.4) 120 (15.4)

a Variables were measured when the child was aged 5 months. Data were compiled from the final master file of the Québec
Longitudinal Study of Child Development (1998-2018), Gouvernement du Québec, Institut de la Statistique du Québec.

b Comparison of sex-specific samples; P values are based on a χ2 test of independence for categorical variables and on a
Wilcoxon test for continuous variables.

c Assessed with 7 items (eg, “How easy or difficult is it for you to calm or soothe your baby when he/she is upset?”) from
the Infant Characteristics Questionnaire,32 administrated to both parents. Scores range from 0 to 10, with higher scores
indicating more difficult temperament.

d Assessed with 5 items from the Parent Practices Scale,33 evaluating positive interactions between the mother and the
child. Scores ranges from 0 to 10, with higher scores indicating high positive interactions.

e Assessed with an aggregate of 5 items regarding parental educational level, parental occupation, and annual gross
income (range, −3 to 3, centered at 0, with higher scores indicating higher socioeconomic status).

f Assessed with 7 items (eg, do not get along well together) from McMaster Family assessment administered to the mother
(Ontario Child Health Study: Reliability and Validity of the General Functioning Subscale of the McMaster Family
Assessment Device34). Scores range from 0 to 10, with higher scores indicating lower family functioning.

g Assessed using a short version of the Centre for Epidemiological Study Depression Scale.35 Scores range from 0 to 10,
with higher scores indicating higher depressive symptoms.

h Assessed with binary questions on 5 different conduct problems based on the DSM-IV criteria for conduct disorder and
antisocial personality disorder.36 Scores range from 0 to 5, with higher scores indicating more antisocial behaviors.
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the Centre for Epidemiological Study Depression Scale35), and antisocial behavior (assessed with
binary questions on 5 different conduct problems based on the DSM-IV criteria for conduct disorder
and antisocial personality disorder36). Child temperament was assessed with 7 items (eg, “How easy
or difficult is it for you to calm or soothe your baby when he/she is upset?”) from the Infant
Characteristics Questionnaire,32 administrated to both parents.

Statistical Analysis
Random Forest Approach
We used a random forest algorithm, a nonparametric ensemble machine learning method that aims
to find the most accurate combination of variables to predict a new observation.40 Random forests
are well adapted to mental health prediction; first, they can be applied to classification or regression
prediction, and often mental health issues can be framed as classification problem; second,
categorical and continuous variables can be used jointly as predictors; third, they have been
demonstrated to be a performant and reliable machine learning method.41,42 Random forests result
from the aggregation of a set of decision trees, created with recursive bootstraps of the initial
sample.43 For each decision tree, two-thirds of the sample was used to create the prediction
algorithm, while the remaining one-third was used to test the performance of the algorithm,
measured by the prediction error (called out-of-bag error) and to calculate the importance of the
variables in the prediction (eAppendix in the Supplement). Decision trees proceed from a parent
node to a child node, according to the optimal split value of the variable obtained according to the
principle of maximum homogeneity for the outcome in each node. Derived trees are then aggregated
to obtain the final prediction model. The synthetic minority over-sampling technique algorithm was
used to avoid bias due to controls outnumbering cases.44 Previous studies reported that combining
random forests and the synthetic minority over-sampling technique improve the prediction
performances.45,46 The R statistical software version 4.0.2 (R Project for Statistical Computing)
missForest algorithm was used to impute missing data in the factors (eAppendix in the
Supplement).47 To perform the analysis, we randomly split our original data set into training (80% of
the total cohort) and testing (20% of the total cohort) samples. The training samples were used to
compute the predictive algorithms for the outcome.48 Preliminary analyses were conducted with sex
as a factor in the models, but considering the important sex differences in suicide attempt,4 this
variable overshadowed all other variables in terms of prediction and precluded us from investigating
sex differences. Therefore, we conducted separate analyses for males and females. Analyses were
performed in R statistical software with the randomForest and caret packages.

Evaluating Model Performance
Model performance (ie, the accuracy of the model in predicting new cases) was evaluated using
out-of-bag error, defined as the prediction error obtained in the out-of-bag set using the identified
factors (values ranged from 0%, indicating that all the individuals are correctly classified, to 100%,
indicating that none of the individuals are correctly classified); area under the receiver operating
characteristic curve (AUC),49 representing the predicted true-positive rate against the false-positive
rate, which measures the accuracy of the prediction and ranges from 0.5, indicating prediction by
chance, to 1, indicating perfect prediction; sensitivity, representing the proportion of actual cases
that the model predicted to be cases, and specificity, representing the proportion of actual noncases
that the model predicted as noncases; and positive predictive value (PPV), defined as the proportion
of actual cases among those that the model predicted would be cases, and negative predictive value
(NPV), defined as the proportion of actual noncases among those that the model predicted would be
noncases. To obtain unbiased prediction performances, we first created the prediction algorithms in
the training sample, containing 80% of the observations, and then tested its performance in the
testing sample, containing the remaining 20% of observations. To prevent our prediction
performances to be underestimated or overestimated owing to a particular random split of the
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sample, we randomly generated 50 training and testing samples, repeated the analyses 50 times,
and reported the mean values of the predictive performances’ indices.

All statistical tests were 2-tailed, and the level of statistical significance was P < .05. Data were
analyzed from November 2019 to June 2020.

Results

A total of 1623 participants were included in the sample, and 91 of 845 females (10.8%) and 43 of 778
(5.5%) of males reported a suicide attempt in adolescence. The random forest model predicting
suicide attempt among females, obtained with the training sample, had an out-of-bag error of 12.7%,
suggesting that only a small proportion of females were misclassified by the algorithm using the
selected set of variables. When applied to the testing sample, this classification algorithm achieved a
sensitivity of 0.50 and a specificity of 0.76. This suggests that the algorithm correctly identified as
cases 50% of youths who attempted suicide and correctly predicted 76% of youths would not
attempt suicide. The PPV was 0.60, suggesting that 60% of the individuals that the model identified
as cases were actually cases. Similarly, the NPV was 0.75 indicating that 75% of youths that the model
predicted would not attempt suicide were correctly identified. The AUC was 0.72 (95% CI, 0.71-0.73),
reflecting a moderately good discrimination (ie, 44% better than chance) (Figure 1). Performance
metrics are presented in Table 2. Variables’ importance, measured by mean decrease in accuracy of
the prediction, showed that the top 10 early life factors of suicide attempt in females were
socioeconomic status, father age, mother highest level of education, positive interactions,

Figure 1. Area Under the Receiver Operating Curve of the Predictive Models of Lifetime Suicide Attempt
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Table 2. Discrimination Performances for the Best Prediction Modelsa

Measure

%

Females Males
Out-of-bag error 12.7 9.3

Area under the curve (95% CI) 0.72 (0.71-0.73) 0.62 (0.60-0.62)

Sensibility 0.50 0.32

Specificity 0.76 0.82

Predictive value

Positive 0.60 0.62

Negative 0.75 0.71

a Data were compiled from the final master file of the
Québec Longitudinal Study of Child Development
(1998-2018), Gouvernement du Québec, Institut de
la Statistique du Québec.
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gestational age, adolescent mother antisocial score, mother perceived coercive parenting, father
highest level of education, adulthood father antisocial score, and Apgar score at 1 minute (Figure 2).

Similar to the model for females, the final prediction algorithm for males found only a small rate
of misclassification (out-of-bag error of 9.3%) (Table 2). However, the overall prediction performance
of this algorithm was lower than that for females, with a prediction 24% better than chance (AUC,
0.62; 95% CI, 0.60-0.62) (Figure 1). Sensitivity was also lower in the model predicting suicide
attempt among males (0.32). However, the specificity (0.82), PPV (0.62), and NPV (0.71) for males
were similar to the results in the model for females. The 10 top factors were adulthood mother
antisocial score, adolescent father antisocial score, mother perceived warmth and affection,
adulthood father antisocial score, family size, adolescent mother antisocial score, mother highest
level of education, mother depression, mother perceived marital support, and gestational age
(Figure 2).

Discussion

To our knowledge, this population-based prognostic study is the first to examine the value of early
life factors for the prediction of suicide attempt in adolescents and young adults in a representative
birth cohort. Using a random forest algorithm, a performant machine learning technique, we created
classification algorithms predicting suicide attempt from information (ie, 150 potential factors)
assessed within the first 5 months of life by both parents, as well as from medical information
extracted from hospital birth records. Although the specificity and NPV were acceptable, the AUC,
sensitivity, and PPV of the final models suggested a moderate prediction accuracy. More explicitly,
this indicates that child, parent, family, and neighborhood characteristics assessed within the first 5
months of life were able to correctly identify 76% to 82% of youths as individuals who would not
attempt suicide; that among the overall youth predicted as individuals who would not attempt

Figure 2. Relative Importance of the 30 Top Factors Identified by the Algorithm Predicting Suicide Attempt
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The relative importance of the early life factors considered in the random forest model is measured by the decrease in the prediction accuracy of the model (ie, mean decrease in
accuracy, x-axis) when the variables’ values are randomly shifted in the model.
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suicide, 71% to 75% actually would not attempt suicide; that the global prediction of youth suicide
attempt was 24% to 44% better than chance; that 32% to 50% of the youths who attempt suicide
were correctly identified by the algorithms using information available at age 5 months; and that
60% to 62% of youths identified as individuals who would attempt suicide would actually attempt
suicide in adolescence or young adulthood.

Performance of the Models
The comparison of the performances of our models with those in previous studies is limited by the
lack of machine learning studies investigating the ability of early life factors to predict suicide attempt
using population samples. However, and not surprisingly, the performance of our models using distal
factors was lower compared with studies considering proximal factors.50,51 Indeed, the algorithms
we developed showed moderate prediction performances, as indicated by the area under the curve
and the sensitivity. However, the specificity, NPV, and PPV of the model were acceptable, indicating
that among 10 individuals that the algorithm predicted would attempt suicide, at least 6 did actually
attempt suicide 2 decades later. In comparison, using proximal factors, clinical samples, and
administrative data, previous studies showed AUC values higher than 0.9 for the prediction of suicide
attempt in adolescents (vs general hospital controls).50 Different factors may explain these relatively
modest performances. First, as in most population-based samples, the number of individuals not
reporting a suicide attempt outnumbered those reporting a suicide attempt, which is a challenge for
prediction, as the algorithm focuses on the larger group and tends to predicts everyone as
nonsuicidal.48 Although we accounted for this imbalance by applying oversampling techniques,
prediction of complex behaviors in the general population remains more difficult than in case-control
studies.52 Second, our analyses considered factors measured during a very specific time window (ie,
perinatal and first months of life), and despite the recognized importance of distal factors associated
with suicide attempt, events experienced by age 5 months are insufficient on their own to fully
predict outcomes 20 years later. This is illustrated by the sensitivity values: they suggest that, while
some individuals are identifiable as at high risk for suicide attempt since early in life, for most
individuals, experiences in later stages of life may have a larger influence on suicide risk. This is in line
with studies suggesting that factors occurring in middle childhood, such as maltreatment, are
important elements in the pathway to suicide,53 and studies that highlighted the important role of
proximal adolescent factors, such as exposure to bullying victimization, early puberty, and substance
use.5,54 It is also important to note that predictions were globally better for females than for males.
This may be owing to the higher proportion of females in our sample, which provided the algorithm
with more individuals to learn from.

Figure 3. Relative Importance of the 30 Top Factors Identified by the Algorithm Predicting Suicide Attempt
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Identified Factors
Despite the low performances of the prediction models, the main identified factors corroborate
findings from previous association studies. The main categories of factors identified include
socioeconomic and demographic characteristics of the family (eg, mother and father education and
age, socioeconomic status, neighborhood characteristics), parents’ psychological state (specifically
parents’ antisocial behaviors), and parenting practices. However, some birth-related variables also
contributed to the prediction of suicidal behavior (eg, prematurity). These findings add to the
existing body of knowledge by showing that early life socioeconomic characteristics and exposure to
parental mental and behavioral problems, which have been identified in previous correlational
studies as main factors of suicide-related outcomes, are emphasized in predictive models even if
their ability to identify youth at risk for suicide attempt is limited.55-59

We identified some common factors for males and females, including parents’ demographic and
psychological characteristics (eg, level of education, age at birth, antisocial behavior scores and
depression), parenting practices, and perceived neighborhood safety (Figure 3). However, we also
found substantial sex differences. Overall, for females, family-related socioeconomic and
demographic characteristics (eg, socioeconomic status or family size, maternal and paternal level of
education, and age at childbirth) were identified as top factors, while for males, parents’ antisocial
behavior and parenting characteristics were identified as top factors.

Limitations
This study has some limitations. First, owing to attrition, analyses were performed on only 77.6% of
participants from the initial representative sample, which calls for caution in the generalizability of
the findings to the original population. Second, although we considered a wide range of early life
factors, other potentially important factors may have been unmeasured in our cohort, such as
parents’ lifetime diagnoses of mental illness and history of suicide attempt. Third, some variables
may be affected by measurement bias. For example, self-reported smoking or alcohol use during
pregnancy may be influenced by desirability bias yielding conservative estimates; however, our
objective was to specifically rely on information obtainable from self-reports by questionnaires or by
interview of a perinatal practitioner more than on objective measures. Fourth, we measured recall
of the past 12 months for suicidal attempt, thus we potentially missed attempts that occurred at ages
14, 16, 18, and 19 years, thus underestimating our predictions. This bias might have been partially
addressed by the lifetime questions at age 20 years.

Conclusions

The findings of this prognostic study based on innovative machine learning techniques suggest that
early life factors previously associated with suicide attempt only modestly contributed to its
prediction. Therefore, although those factors may be important in helping us to understand the
developmental origins of suicide, their role in the long-term prediction of suicidal behavior is limited.
Our findings also stress the importance of later phases of development in the pathway to suicide
attempt. Indeed, while youths identified by our algorithm as at risk for suicide attempt in
adolescence or young adulthood from early life factors had indeed attempted suicide in adolescence
or young adulthood, most youths who attempt suicide are not predicted solely based on early life
factors. Although this observation may seem obvious, it stresses the importance of considering
observational findings from association studies, often based on very large samples,48,60 in a
nondeterministic way. Future research should additionally consider the predictive values of early life
factors in the contexts of other more proximal risk factors and replicate our findings in other
population-based and clinical samples to improve our understanding about the prediction of suicidal
behavior.
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