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Abstract
Poverty, as assessed by several socioeconomic (SES) factors, has been linked to worse cognitive performance and reduced
cortical brain volumes in children. However, the relative contributions of the various SES factors on brain development and
the mediating effects between cognition and brain morphometry have not been investigated. Here we used cross-sectional
data from the ABCD Study to evaluate associations among various SES and demographic factors, brain morphometrics, and
cognition and their reproducibility in two independent subsamples of 3892 children. Among the SES factors, family income
(FI) best explained individual differences in cognitive test scores (stronger for crystallized than for fluid cognition), cortical
volume (CV), and thickness (CT). Other SES factors that showed significant associations with cognition and brain
morphometrics included parental education and neighborhood deprivation, but when controlling for FI, their effect sizes
were negligible and their regional brain patterns were not reproducible. Mediation analyses showed that cognitive scores,
which we used as surrogate markers of the children’s level of cognitive stimulation, partially mediated the association of FI
and CT, whereas the mediations of brain morphometrics on the association of FI and cognition were not significant. These
results suggest that lack of supportive/educational stimulation in children from low-income families might drive the reduced
CV and CT. Thus, strategies to enhance parental supportive stimulation and the quality of education for children in low-
income families could help counteract the negative effects of poverty on children’s brain development.

Introduction

Despite being a high-income country, 16% of children in the
US live below the poverty line [1], and in low- and middle-
income countries up to 43% of children younger than 5 years
(250 million) might not reach their developmental potential
due to poverty [2]. Children living in poverty are exposed to
increased risks (including poor health and education, mal-
nutrition, and unstimulating home atmospheres that influ-
ence brain maturation), perform poorly in school, have lower
educational attainment [3], and frequently show symptoms

of psychopathology [4]. Low socioeconomic status (SES) in
childhood/adolescence can have profound consequences in
adult social behaviors, cognitive abilities, and health [5]
given the plasticity of executive functions during the early
years of life. Socioeconomic disadvantage has been linked
with cognitive deficits [6] and impaired socio-emotional
development [7], and frequently manifest as disease condi-
tions later in life [8].

Only recently, with the advent of large repositories of
magnetic resonance imaging (MRI) datasets, researchers
have begun to investigate the relatively small effects (η2 <
0.1) of SES on brain structure [9, 10]. For instance, family
income (FI) and parental education (PED), two traditional
measures of childhood SES that correlate with one another,
were significantly associated with the thickness of the pre-
frontal cortex (PFC) in children and adolescents [11]. The
effect of SES on cortical surface area was found to be
particularly prominent in frontoparietal regions supporting
language, spatial skills, and executive functions [12].
Beyond PED and FI, risk of lead exposure (RLE), which is
more frequent among the poor [13], has been associated
with lower intelligence [14], and a recent study showed that
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higher RLE, as estimated from residential data, was linked
to lower cognitive scores and increasingly smaller cortical
surface areas and brain volumes in children from low-
income but not in those from high-income families [15].
Excess weight (EW) in children, which in the US is more
prevalent among those with lower SES [16], was also
associated with lower executive function and lower cortical
thickness in PFC areas [17].

Numerous studies have studied the influence of SES on
life outcomes, and related their effects on mental health and
cognition through their influence on the brain [18], and
several studies have also documented that the distal effects
of SES on the brain are mediated by environmental factors
(i.e., “proximal factors”) such as stress, linguistics, cogni-
tive stimulation, parenting practices, prenatal care, toxins,
sleep, or nutrition [9]. Previous studies have also docu-
mented the importance of parental support in brain devel-
opment [19–21]. For example, children who were adopted
when they were older had smaller prefrontal volumes than
those who were adopted when they were younger, indicat-
ing that the longer the duration of childhood deprivation the
worse the outcomes [22]. In another study, young adults
who lived their first years of life (3–41 months) in orpha-
nages under very deprived environments and were subse-
quently adopted, showed smaller total brain volumes (8.6%
smaller) than non-deprived adoptees despite the intervening
stimulation provided by their adoptee families [23].

Other relevant factors influenced by SES that affect brain
development include recreational activities such as time
spent on passive or interactive screen media activity (SMA)
[24, 25], family composition, and interactions (e.g., number
of siblings, SIB, biological parents, and adults living with
the child) [26, 27], and neighborhood deprivation [15, 28].
Thus in our analyses, we included SMA considering that
97% of US children have at least one electronic item in their
bedrooms [29], SIB considering that the number of
only-child families in the Adolescent Brain Cognitive
Development (ABCD) Study is relatively high (67%) and
neighborhood deprivation. The associations between factors
that are influenced by SES and brain structure in children
suggests that there are multiple variables contributing to
poverty’s negative effects on cognition and on brain
development. However, the relative contribution of various
SES factors on cognition and brain morphometrics has not
been comprehensively assessed. While multiple studies
have reported on the mediation of brain morphometrics in
cognition, the mediation of cognition, which we used as
surrogate for levels of child cognitive stimulation, on the
relationship between SES and brain morphometrics has not
been evaluated. Further, the reproducibility of the effects of
SES on brain measures in children has not been investigated
nor have confounds from intra-scan head motion [30, 31]
always been properly controlled [32].

The present study aims to quantify the relative con-
tribution of various socioeconomic [FI, RLE, PED, and area
deprivation index (ADI)], family environment (SIB, SMA),
and demographic (EW, gender, and age) factors on cogni-
tion and brain morphometrics (CV and CT), and their
reproducibility in 7784 children from the ABCD Study. We
strictly controlled for scanner manufacturer (SM), head
motion, intracranial volume (ICV), and race, using factorial
analysis of covariance (ANCOVA) and causal mediation
analysis (CMA). Our working hypothesis was that com-
pared to other SES indicators, FI would have the strongest
effects on cognition and brain development, and that after
covarying for FI the effects of the other SES factors on
cognition and brain morphometrics would be significantly
reduced. We also hypothesized that proximal factors such as
educational achievement, extracurricular activities, sleep,
BMI, and/or pubertal hormones would mediate the effects
of FI on brain morphometrics.

Materials and methods

Participants

The ABCD Study is a 10-year longitudinal study involving
21 data collection sites across the United States [33]. Cen-
tralized institutional review board (IRB) approval was
obtained from the University of California, San Diego IRB.
Study sites obtained approval from their local IRBs. Written,
informed consent was provided by each parent. Children
were fluent in English and provided written assent for their
participation. All ethical regulations were complied with
during data collection and analysis. Recruitment closely
represented demographic variables (sex, race, ethnicity, par-
ental marital status and education, and income) of the general
US population [34]. Children were excluded if they had
contraindications for MRI, intellectual, medical, or neurolo-
gical issues, or poor English-language proficiency [35].

The 2019 ABCD 2.0 data release [36] includes baseline
data for more than 11,800 children. To control for intra-scan
head motion, in this study we included data (Table S1) from
10,712 children with available mean framewise displace-
ment (FD) data corresponding to resting-state fMRI. A
participant’s data were additionally excluded if brain seg-
mentation did not pass ABCD quality control (QC) (N=
384), or demonstrated moderate or severe head motion (N=
992); miss sex (N= 1, defined at birth), age (N= 0), race/
ethnicity (N= 14), weight or height (N= 21), FI bracket
(N= 876), PED (N= 345), ADI: median FI (ADI, N= 640),
or the cognitive total composite score from the NIH Toolbox
(N= 354); or was an outlier for body mass index (BMI > 50;
N= 6). Thus, a total of 2928 children were excluded, 705 of
which meet more than one exclusion criterion. For the
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variables of interest (Supplementary Table 1), there were
complete data for 7784 children, which were randomly split
into Discovery and Validation samples of equal size (N=
3892) to assess the reproducibility of the results (Table 1). In
addition, an independent group of 262 children (Normality
sample) with missing PED but otherwise complete data was
identified among excluded children in the ABCD dataset to
perform tests of normality on the morphometric data.

Residential history data

Fifteen additional ADI dimensions (education, household
disparity, median home, rent and mortgage values, per-
centages of homeowners, families living in poverty and
crowdedness, unemployment, singles, homes without car
and telephone, and population density) and three uniform
crime reports (total crime, DUI, and drug abuse) were
extracted from residential history-derived scores to assess
neighborhood deprivation and safety.

Behavioral data

We used the uncorrected standard fluid, crystallized and
total cognition composite scores, which were calculated

within the NIH Toolbox [37]. The Fluid Composite scores
were calculated using the following tests: (1) pattern com-
parison processing speed; (2) list-sorting working memory;
(3) picture sequence memory; (4) Flanker; and (5) the
dimensional change card sort. The crystallized composite
scores were calculated using (6) the oral reading recognition
and (7) the picture vocabulary tests. The fluid and crystal-
lized composites were used to calculate the total cognition
composite scores.

Morphometric data

We used measures of CV, and CT, which were estimated
from T1-weighted scans. The MRI data acquisition proce-
dures and image processing analysis of the ABCD study are
described in detail elsewhere [38, 39]. In brief, T1w and
T2w structural scans with 1-mm isotropic resolution were
collected using adult-size multi-channel coils, and harmo-
nized image acquisition protocols for 3Tesla Siemens,
Phillips, and General Electric scanners at 21 sites. During
MRI, children restfully watched a child-friendly movie in
the scanner [38]. Structural scans were collected using real-
time motion detection and correction [38]. QC procedures
were based on automated mean and SD of brain values [39].

Table 1 Characteristics of the Discovery and Validation ABCD samples.

Included Excluded

Discovery Validation P val

Family income 7.2 ± 2.4 7.3 ± 2.3 n.s. 5.1 ± 3.9a

Average neighborhood income ($) 76,641 ± 34,369 77,416 ± 35,181 n.s. 58,712 ± 46,203a

Risk of lead exposure 4.9 ± 3.1 4.9 ± 3.1 n.s. 4.4 ± 3.6a

Excess weight (lean/overweight) 2530/1362 2522/1370 n.s.b 1825/1103a

Siblings (yes/non) 1280/2612 1271/2621 n.s.b 1981/947a

Screen media activity (h/week) 20.8 ± 16.9 20.4 ± 16.9 n.s. 22.3 ± 18.6a

Parental education level 16.6 ± 2.6 16.7 ± 2.5 n.s. 14.0 ± 5.8a

Sex (male/female) 2042/1850 2044/1848 n.s.b 1507/1421

Age (months) 118 ± 8 119 ± 8 n.s. 118 ± 7

Intracranial volume (L) 1.52 ± 0.15 1.52 ± 0.15 n.s. 1.49 ± 0.15a

Race (White/African American/Hispanic/Asian/Otherc) 2149/486/788/61/408 2189/503/743/68/389 n.s.b 1311/570/639/91/317a

Scanner manufacturer (GE/Phillips/Siemens) 792/417/2683 814/450/2628 n.s.b 911/485/1532a

Mean framewise displacement (mm) 0.26 ± 0.26 0.27 ± 0.27 n.s. 0.36 ± 0.34a

Mean cortical thickness (mm) 2.80 ± 0.09 2.80 ± 0.09 n.s. 2.75 ± 0.12a

Total cortical volume (mL) 601 ± 58 601 ± 56 n.s. 589 ± 59a

Total cortical area (mm2) 187 ± 18 187 ± 18 n.s. 187 ± 20

Fluid composite 96 ± 17 97 ± 17 n.s. 83 ± 34a

Crystallized composite 106 ± 18 107 ± 18 n.s. 94 ± 36a

Cognitive total composite 101 ± 17 102 ± 18 n.s. 87 ± 36a

aSignificant difference between included and excluded participants (P < 0.05).
bχ2-test.
cMore than one race; P val: statistical differences between the Discovery and Validation samples.
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In addition, trained raters inspected T1w and T2w images
for poor quality, artifacts such as motion-related ghosting,
blurring, or ringing that prevent brain segmentation [39].
T1w and T2w images were corrected for scanner-specific
gradient distortions. Intensity inhomogeneity was corrected
using a B1-bias field, and image intensity was harmonized
across participants. Cortical and subcortical segmentation of
T1w images was computed with FreeSurfer [39], which has
been validated for use in children [40]. We used 148 cortical
ROIs automatically segmented according to surface-based
nonlinear registration to an atlas of cortical folding patterns
[41]. Trained raters reviewed the accuracy of the segmen-
tation and the artifacts of the cortical surface reconstruction,
indicating if motion, intensity inhomogeneity, white matter
underestimation, pial overestimation, and magnetic sus-
ceptibility artifacts were either absent, mild, moderate, or
severe, and gave on overall QC score for the cortical surface
reconstruction [39].

Additional data

The numbers of biological parents and adults living with the
child were additionally used to assess family composition,
and school grades and sleep hours were used to assess
educational achievement and sleep behavior, for all children
(N= 7784). In ABCD subsamples with available data, we
separately assessed children’s access to alcohol (N= 3405)
and cigarettes (N= 1238), as measures of parental oversight,
extracurricular activities [sports (N= 2342), arts (N= 1927),
reading (N= 2261), and music listening (N= 2229)], as
measures of enrichment opportunities, and sex hormone
levels [estradiol, HSE (N= 1177), testosterone, ERT (N=
2707), and dehydroepiandrosterone, DHEA (N= 2811)] as
measures of pubertal development.

Statistical analyses

We first tested the normal distributions of total CV and its
regression slopes for the continuous variables (see text
below) using the Shapiro–Wilk normality test [42] and the
Normality sample (W > 0.99; P > 0.05). Then, a factorial
ANCOVA was conducted in R to study main effects of FI
[ten income brackets: (1) <$5000; 2) $5000–12,000; (3)
$12,000–16,000; (4) $16,000–25,000; (5) $25,000–35,000;
(6) $35,000–50,000; (7) $50,000–75,000; (8)
$75,000–100,000; (9) $100,000–200,000; (10) >$200,000]
on the dependent variable Y, which represents either brain
morphometrics (CV and CT) or the total cognition compo-
site, while controlling for differences in sex, age, ICV, and
race [White, African American, Hispanic, Asian, Other],
which were used as covariates of no interest. Since head
motion is also a concern for pediatric structural and func-
tional neuroimaging [30, 31, 43], we also controlled for the

subjects’ tendency to move their head while resting in the
scanner, as informed by the subjects’ average FD during 5-
min resting-state fMRI scans, using FD as an additional
covariate of no interest. Because the ABCD morphometric
measures vary significantly with SM [39], when modeling
morphometrics we used SM (GE, Philips, Siemens) as an
additional covariate of no interest.

Socioeconomic (SES) variables [FI, RLE (US census
tract [15]), PED (the average educational level achieved by
the parent; 22 levels), SMA (number of weekly hours the
child spends watching TV shows, movies, or videos;
playing video games; texting; video chatting; or visiting
social network sites), and ADI] were highly correlated with
one another (0.61 > |R| > 0.13; P < 2E− 16), sharing a sig-
nificant fraction of the variance.

We used Akaike (AIC) and Bayesian (BIC) information
criteria to select the SES variable providing the better fit to
the data. Specifically, we contrasted AIC and BIC values for
five different models summarized by

Y � Z þ EWþ IBþ Covariates ð1Þ

where EW (L: underweight or lean, O: overweight or obese)
and SIB (N: no siblings, Y: one or more siblings) are
categorical factors and Z stands for FI (model 1), ADI (model
2), PED (model 3), RLE (model 4) or SMA (model 5). BMI
was calculated in kg/m2 from the participant’s weight and
height, and overweight-obese (underweight-lead) was
defined as BMI > (<) 85th percentile for children and teens
of the same age and sex. Since these comparisons
demonstrated that model 1 provided the best fit to
morphometrics and cognition composites, a full model:

Y � FIþ ADIþ PEDþ RLEþ SMAþ EWþ SIBþ Covariates

ð2Þ

was additionally tested to assess residual effects of
secondary SES variables (ADI, PED, RLE, SMA) relative
to that of the main SES variable (FI), and to assess regional
effects of FI, EW, and SIB on brain morphometrics. Partial
η2 was used in conjunction with ANCOVA to estimate
effect sizes of categorical and continuous factors [42].
Tukey’s “Honest Significant Difference” method [44] was
used in conjunction with ANCOVA to compute confidence
intervals on the differences between the means of the levels
of a categorical factor. Bonferroni corrections for multiple
comparisons were based on 148 ROIs.

Principal component analysis (PCA) and hierarchical
clustering

PCA, conducted with the stats v3.6.2 R-package, was used
for dimensionality reduction and exploratory data analysis.
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The hierarchy of clusters was visualized as a heatmap with a
dendrogram.

Causal mediation analysis (CMA)

The “mediation” package [45] and a global model including
all factors in Eq. (2) were used to estimate causal mediation
effects with continuous and discrete mediators [46]. One
thousand bootstrapping samples and a heteroskedasticity-
consistent estimator for the covariance matrix were used to
estimate the average direct (ADE) and causal mediation
(ACME) effects.

Results

All 36 demographic, cognitive family SES, and health
behavior variables had significant correlations with FI, CV,
and CT (0.03 < R < 0.60, Fig. 1A). Ten principal compo-
nents (PC) accounted for 72% of the variance in SES and
cognitive measures (Fig. 1B). Poverty indicators (ADI)
predominated in PC# 1, 2, and 4, which accounted for 44%
of the variance; cognitive measures predominated in PC# 3,
which accounted for 9% of the variance.

Socioeconomic factors and cognition

Fluid, crystallized, and total cognitive test composites were
positively correlated with FI (Fig. 2A), ADI, and PED,
factors that were strongly correlated across participants (R >
0.42, N= 7,784, P < 2E− 16), and worsened with
increased RLE and longer SMA (Fig. S1), which were
negatively associated with FI (R <−0.28, N= 7784, P < 2E

− 16). Regression slopes for these factors were reproducible
and steeper for crystallized than for fluid cognitive scores
(F1,16 > 39.0, P < 1E− 05, ANCOVA; Fig. 2A). The effect
sizes on cognition were larger for FI (0.069 < η2 < 0.156,
medium-large effect size) than for SMA (0.010 < η2 < 0.015,
small effect size) and PED (0.015 < η2 < 0.035, small effect
size; for crystallized and total composites, not for fluid) and
altogether explained ~20% of the variance in cognition
(Fig. 2B) and were reproducible (Fig. 2C). The AIC applied
to five different ANCOVA models to determine which SES
factor best-fitted the cognition composite corroborated that
FI had the best fit (ΔAIC=AIC−AICFI > 38.5)
(Table S2). After accounting for FI, the residual effects of
ADI, PED, RLE, SMA, and siblings (SIB) on cognition
were significant and reproducible, but for EW were not
reproducible and for RLE and ADI were not significant
(Tables S2 and S3).

Socioeconomic factors and brain morphometry

Total CV and average CT had positive correlation with FI,
PED, and ADI, and negative correlation with RLE and
SMA (Figs. 1D and S1A and Tables S4 and S5), paralleling
the effects of FI on cognition, and the regression slopes
were steeper for CV than for CT (F1,16 > 80.4, P < 1E− 07,
ANCOVA). As for cognition, we estimated the effects of
the SES factors on morphometrics using five different
ANCOVA models (Table S4) and found that FI had the best
fit (AIC was lower for FI than for other SES factors) (ΔAIC
> 2.8). The stronger correlations between FI and CV were in
superior frontal, middle temporal, orbital and precentral
gyri, and anterior cingulum (Fig. 3A), whereas for CT they
were in sensory cortices, posterior default-mode network

Fig. 1 Demographic, cognitive, family SES, and health behavior
variables. A Scaled heatmap with hierarchical clustering showing the
correlations of these variables with family income (FI), cortical
volume (CV), and thickness (CT). B Bar plot showing that the top ten

principal components captured 72% of the variance (top) and a scaled
heatmap with hierarchical clustering showing relative contributions of
the principal components for each of the variables (bottom). High-
lighted variable labels correspond to residential history-derived scores.
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Fig. 2 Demographics and morphometrics variables versus socio-
economic factors. Linear associations of family income (FI) with fluid
(FluidComp), crystallized (CrysComp), and total (CognComp) cog-
nition composites (A), and with relative measures of total cortical
volume (CV) and mean cortical thickness (CT) (D), averaged within
participants of the same FI bracket. Effect size (partial η2) corre-
sponding to nine ANCOVA factors and two independent samples
(Discovery and Validation) for three cognitive scores (B) and three
morphometrics (E). Scatter plots showing the reproducibility of the
effect sizes (C, F). FI brackets: (1) <$5000; (2) $5000–12,000; (3)

$12,000–16,000; (4) $16,000–25,000; (5) $25,000–35,000; (6)
$35,000–50,000; (7) $50,000–50,000; (8) $75,000–100,000; (9)
$100,000–200,000; (10) >$200,000. Factorial ANCOVA with nine
factors of interest [FI, RLE, excess weight (EW), siblings (SIB), SMA,
PED, sex, age, and area deprivation index (ADI)], and four covariates
of no interest (race, intracranial volume, scanner manufacturer, and
intra-scan head motion). Discovery and Validation samples of equal
size (N= 3892), matched by demographic, socioeconomic, morpho-
metric, and cognitive variables (Table 1).

Fig. 3 Regional effects of family income (FI) on cortical volume
and thickness. Cortical renderings of statistical significance for the
effect of FI on brain morphometrics showing the pattern of the effect in
the Discovery (A, B) and Validation (C, D) samples. Factorial
ANCOVA with nine factors of interest (FI, risk of lead exposure,

excess weight, siblings, screen media activity, parental education, sex,
age, and area deprivation index), and four covariates of no interest
(race, intracranial volume, scanner manufacturer, and intra-scan head
motion).
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regions, and language areas (P < 1E− 18; Fig. 3B). The
effects of FI on CV and CT were highly reproducible
(Figs. 3 and S2 and Table S6).

The residual effects of PED and SIB on brain morpho-
metrics were reproducible (Table S4). FI had large repro-
ducible effects on CV (η2 > 0.195) and smaller reproducible
effects in CT (η2= 0.024), whereas the other variables
showed small but reproducible effects (0.010 < η2 < 0.030)
on total CV (SIB and PED), and CT (EW). Children with
siblings had smaller cortical area (F1,7765= 153.4, P < 2E−
16; Fig. S1), also resembling the effects of SIB on cognition
(see Supplementary Results) but had thicker cortex than
children without siblings [<1.5%; TukeyHSD test; Fig. S2].
Overweight/obese children had thinner cortex than lean/
underweight children [F1,16= 5.0, P= 0.04, ANCOVA;
Fig. S2].

Mediation analysis

CMA (Fig. 4A–D, F, G) demonstrated direct effects of FI
on all demographic, cognitive, family SES, and health

behavior variables, except alcohol sips (PADE < 2E− 16), as
well as reproducible partial mediation effects of ADI
(education, RLE, median home values, and homeowners,
house occupancy and unemployment rates), sleep hours,
BMI, and processing speed on the relationship between FI
and CV (PACME < 0.05), and of inhibitory (Flanker), lan-
guage (picture vocabulary), memory (card sort and list sort)
and information processing, BMI, and the number of sib-
lings on the relationship between FI and CT (PACME < 0.05).

Pubertal hormones

CMA also demonstrated significant mediation effects of
pubertal hormones (ERT and DHEA) on the relationship
between FI and CV (PACME < 2E− 16; Fig. 4E). ERT
and DHEA had significant negative correlation with FI
(P= 1E− 04).

While CMA demonstrated direct effects of FI on school
grades, music listening, and children’s access to alcohol and
tobacco, it did not show significant mediation effects of
these variables to CV or CT.

Fig. 4 Causal mediation analysis (CMA). Mediation models (A, C)
and unscaled heatmaps with hierarchical clustering (B, D) for average
direct (ADE) and causal mediation (ACME) effects of cortical volume
(CV) and thickness (CT) on the relationships between family income
(FI) and 36 demographic, socioeconomic, and health behavior vari-
ables (X; A, B) and for those of X on the relationships between FI and
the morphometrics (C, D) for Discovery (Dis) and Validation (Val)
samples of 3892 children each. Separate CMA for selected subsamples
assessing ADE and ACME of access to alcohol (N= 3405) and
cigarettes (N= 1238), extracurricular sports (N= 2,342), arts (N=
1,927), reading (N= 2,261), and music listening (N= 2229), as well

as pubertal estradiol, HSE (N= 1,177), testosterone, ERT (N= 2707)
and dehydroepiandrosterone, DHEA (N= 2,811) hormones (X) on the
relationships between FI and morphometrics, as well as those of CV
and CT on the relationships between FI and X (E); the reproducibility
of these pathways was not tested given the reduced size of these
subsamples. Schematics highlighting reproducible ADE and ACME
for CV (F) and CT (G). ADI area deprivation index, SIB siblings, PED
parental education, BMI body mass index, RLE risk of lead exposure,
SMA screen media activity. Highlighted variable labels correspond to
residential history-derived scores.
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Discussion

Here, studying the relative contribution of various SES
factors on cognition (fluid and crystallized) and brain mor-
phometrics in two independent ABCD samples of children,
we corroborated our hypothesis that FI had the strongest
associations with cognition and brain morphometrics.

FI had a reproducible contribution to inter-individual
variations in cognitive test scores (partial η2 > 0.15), and to
total CV (partial η2 > 0.20) and had a smaller though sig-
nificant and reproducible association with CT (partial η2 <
0.03). Unique contributions from other factors, which cor-
related with FI (residual effects of PED, RLE, EW, SMA,
and ADI) were significant, but their effect sizes were much
smaller than for FI and accounted for only a small fraction
of the variance in cognitive scores and in total CV (partial
η2 < 0.03). Similar findings were reported by a prior study in
1099 typically developing 3–20 years old, which also
showed that among the SES factors investigated, FI had the
largest influence on brain structure [12].

FI had strong linear associations with the cognitive
composites, consistent with prior studies [3, 6], which
were steeper for crystallized than for fluid scores. This
suggests that language abilities might be particularly vul-
nerable to growing up in poverty, presumably from lack of
access to high-quality education as well as exposure to
more complex verbal and written language during every-
day family life. FI was also reproducibly associated with
the fluent composite with medium effect size, which sug-
gests that the ability to solve problems, think, and reason
abstractly might be impaired in children from low-income
families, presumably due to limited exposure to an envir-
onment that can promote the development of such skills. In
parallel, we observed an association between FI and CV,
particularly in superior frontal, middle temporal, orbital
and precentral gyri, and anterior cingulate, and between FI
and CT, particularly in sensory regions, precuneus and
language areas.

The slope of the association between FI and CT (0.2%
per income bracket) was less steep than for total CV (1%
per income bracket), both in the Discovery and Validation
samples, suggesting a weaker influence of FI for CT than
for CV. Reduced CV in low-income family children could
result from decreased gyrification during brain maturation
[47], and the smaller effects on CT could reflect accelerated
developmental thinning of the cortex [47]. The association
of FI with CT was most prominent in sensory, default-
mode, and language regions, a pattern remarkably similar to
the autonomic brain network implicated in processing sig-
nals from the peripheral nervous system, personality, and
emotions [48]. Thus, greater reactivity of the autonomic
system in poor children might have accelerated pruning in
these regions [49].

Higher education, better jobs, higher income, and better
neighborhoods usually tend to go together, and though
highly correlated [50] might have unique consequences on
children’s brain development [51]. We found that higher
PED (degree, or school grade/level completed by parents)
was uniquely associated with better cognition scores and
increased CV, independent of FI and other covariates in a
reproducible way. However, the association of PED with
average CT was not significant, consistent with prior studies
[12]. These differences could reflect the fact that CV and
CT, capture different evolutionary, genetic, and cellular
factors [52, 53]. We also found that after accounting for FI,
the residual effect of ADI was weakly associated with the
cognition composites but did not show associations with
any of the brain morphometrics.

In our study we assumed that cognitive performance is
an indirect surrogate of the level of stimulation a child is
exposed to and hypothesized that it would partially mediate
effects of FI on brain morphometrics. Our findings corro-
borated this hypothesis and showed that scores on language
and executive functions, including inhibitory-control and
working memory, partially mediated the association of FI
with CT, and those of processing speed partially mediated
the effects of FI on both, CT and CV, consistent with the
influence of family SES on children’s cognitive abilities
[54]. These suggest that income-related cognitive stimula-
tion (e.g., childcare quality, school quality, access to tutors
and home learning environments, etc.) could have influ-
enced the association between FI and children’s CV and
CT. Prevention studies that have evaluated the effects of
training parents on family management including problem-
solving and support for academic activities were shown to
prevent the adverse effects of poverty on brain development
[55]. Unfortunately, the ABCD study has limited informa-
tion of childcare data during early childhood development,
so we cannot assess its modulation of FI effects on brain
morphometrics. Also, we did not find mediation effects on
the relationships between FI and brain morphometrics with
two other surrogate markers of stimulation (children’s
school grades and extracurricular activities). However, it
should be noted that school grades in the ABCD dataset are
currently not normalized to school’s rankings across the
country, and the data on extracurricular activities is only
available for 25% of the ABCD sample.

We found reproducible mediation effects of increased
BMI on the association between lower FI and smaller CV
and CT. The observed negative correlation between BMI
and FI is consistent with the increase of BMI in children
from poor neighborhoods [56]. Since higher BMI has been
associated with lower brain volumes [57], our findings
suggest that the associations between FI and CV and CT
partially reflect higher BMI in children from low-income
families. We also found reproducible mediation effects of
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sleep hours on the association between lower FI and smaller
CV. Sleep is important for several brain functions as well as
for the clearance of accumulating toxins from the brain [58].
The negative correlation between FI and sleep hours sug-
gests that insufficient sleep may have contributed to smaller
CV in children from low-income families. Similarly, in a
subsample of N > 2700 ABCD children we found an intri-
guing mediation effect of pubertal hormones (ERT and
DHEA) on the association between FI and CV. Since
gonadal steroids levels increase during puberty and ado-
lescence [59], the observed negative correlation between FI
and pubertal hormones suggests delayed puberty in children
from low-income families, which could be consistent with
delayed neurocognitive maturation in lower-income envir-
onments [60]. Therefore, the mediation of the hormonal
levels suggests that delayed puberty may have contributed
to smaller CV in children from low-income families.
However, note that other studies have reported an opposite
association; that is accelerated puberty in girls from low
SES [61]; this conflicting results might reflect character-
istics of the ABCD sample such as lower representation of
children of families with very low SES than prior studies.

Though the cross-sectional nature of baseline ABCD
Study’s data does not allow us to confer causality, our
findings in the context of the existing literature have public
health implications that highlight the importance of strate-
gies to minimize the adverse effects of poverty in children.
Moreover, such preventive strategies have been shown not
only to be beneficial to the children who were targeted but
to have transgenerational effects improving cognition and
mental health in their children when they become parents
[62]. Further, the protective effects of prevention interven-
tions against poverty reduced the poverty status of children
when they reached young adulthood [63].

Additional limitations to our study include the narrow
age range of participants, which limits the generalizability
to other brain development stages. The ABCD sample’s
representativenes of the US population is only partial.
Specifically, while the ABCD sample and the general US
population have similar PED at the lower levels (e.g., 68%
of parents in ABCD and 62–67% of adults in US completed
at least some college studies), a larger fraction completed
the Batchelor’s degree in ABCD (55%) than in the US
population (46%). The ABCD study has also relatively
lower representation from families of very low incomes and
this might have contributed to the discrepant findings we
observed for the assocation between low FI and puberty.
Also the number of only-child families in the ABCD study
is relatively high (67%), and family environment may be
radically different for only-child and multi-children families
in terms of the children’s cognition, personality and affect
characteristics [26], which is why we assessed the influence
of SIB. However, the association with sibling might have

differed in a population that had higher representation from
families with very low incomes. Finally, the recently
reported low reliability of the NIH-Toolbox cognitive bat-
tery [64], which will require further re-assesement, might
limit the robustness of findings pertaining to cognition.

Here we show reproducible moderate associations of FI
with cognition and brain structure. The mediation analyses
suggest that lower cognition, insufficient sleep, EW, and
crowded family environments in children raised in eco-
nomically disadvantaged families might contribute to these
disparities.
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