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Abstract

Heavy cannabis use (HCU) is frequently associated with a plethora of cognitive, psy-

chopathological and sensorimotor phenomena. Although HCU is frequent, specific

patterns of abnormal brain structure and function underlying HCU in individuals pre-

senting without cannabis-use disorder or other current and life-time major mental

disorders are unclear at present. This multimodal magnetic resonance imaging (MRI)

study examined resting-state functional MRI (rs-fMRI) and structural MRI (sMRI) data

from 24 persons with HCU and 16 controls. Parallel independent component analysis

(p-ICA) was used to examine covarying components among grey matter volume

(GMV) maps computed from sMRI and intrinsic neural activity (INA), as derived from

amplitude of low-frequency fluctuations (ALFF) maps computed from rs-fMRI data.

Further, we used JuSpace toolbox for cross-modal correlations between MRI-based

modalities with nuclear imaging derived estimates, to examine specific neurotrans-

mitter system changes underlying HCU. We identified two transmodal components,

which significantly differed between the HCU and controls (GMV: p = 0.01, ALFF

p = 0.03, respectively). The GMV component comprised predominantly cerebello-

temporo-thalamic regions, whereas the INA component included fronto-parietal

regions. Across HCU, loading parameters of both components were significantly

associated with distinct HCU behavior. Finally, significant associations between GMV

and the serotonergic system as well as between INA and the serotonergic, dopami-

nergic and μ-opioid receptor system were detected. This study provides novel multi-

modal neuromechanistic insights into HCU suggesting co-altered structure/function-

interactions in neural systems subserving cognitive and sensorimotor functions.
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1 | INTRODUCTION

According to the United Nations Office on Drugs and Crime, around

192 million of the global population regularly and recreationally (not

for medical purposes) use cannabis.1 Regular and heavy cannabis use

(HCU) is a modifiable risk factor for the development of mental ill-

ness2 and a widespread public health issue of mainly young adults.3–6

According to recent scientific evidence, there is a causal link between

cannabis use and long-lasting common mental disorders

(e.g., psychotic disorders6,7 and substance-use disorders).4–6 In 2010,

there were 2 million disability-adjusted life years (DALYs) attributable

to cannabis dependence.3,8 According to recent scientific evidence,

there is a causal link between cannabis use and long-lasting common

mental disorders (e.g., schizophrenia and other psychotic disorders).6,7

One of the main hypotheses for psychotic disorders implicates differ-

ent types of cannabis and a dysregulation (aberrant endogenous sig-

nalling) between the two main psychoactive components

Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD).6,7 Further-

more, THC and CBD might differently interfere with the endo-

cannabinoid and other neurotransmitter systems,9,10 and hence, both

substances have different acute-, residual- and long-term effects on

affective, cognitive and sensorimotor functioning.11 On one side, THC

can acutely increase positive mood12 and reduce anxiety at low

doses.13 Further, higher doses of THC might increase the vulnerability

of the 5-HT system and lead to depressive, anxiety and psychotomi-

metic effects (e.g., paranoia, dissociation and depersonalization) as

well as impaired memory and attention.10,14,15 Additionally, long-term

effects of cannabis on executive functions are seen in disturbed

decision-making, concept formation and planning.11 On the other side,

CBD might decrease the negative effects and perhaps increase the

positive effects of THC,16 leading to antidepressant- and anxiolytic-

like effects.17 The co-localization in the brain and interaction between

endocannabinoid and opioid systems play a key role in pain

processing, memory, reward and addiction.18–20 In particular, THC

might suppress some opioid signs and symptoms.20 In turn, CBD may

have an “anti-addictive” effect through its action on endocannabinoid,

dopaminergic, serotonergic and opioidergic, systems.21,22

Although both abnormal brain structure and function has been

attributed to HCU, previous neuroimaging studies on HCU showed

heterogeneous results mostly prevented through methodological con-

straints such as unimodal examination of patients with severe comor-

bid mental disorders. Therefore, it is unclear whether HCU is related

to co-altered patterns of brain structure and function, or whether grey

matter volume (GMV) and intrinsic neural activity (INA) convey unique

and different aspects associated with HCU. Also, it is still unclear how

HCU-related structural and functional brain abnormalities are coupled

to different neurotransmitter systems. Given the importance of these

questions, improving the understanding of the neurobiology underly-

ing HCU is crucial to informing the development of new classes of

treatment of both young individuals at high risk for developing a

substance-use disorder (SUD).

In order to expand the extant knowledge on network abnormali-

ties spanning across multiple imaging modalities in terms of joint

function–structure alterations, which are related to HCU, this study

had two major objectives: First, we predicted that there will be a dif-

ference in each modality-specific (i.e., brain structure or function) and

intermodal (i.e., structure and function) systems comprising cognitive,

reward-associated and sensorimotor networks between HCU and a

control group without cannabis use. In particular, we chose amplitude

of low-frequency fluctuations (ALFF) as primary measures of local

intrinsic activity to facilitate comparability with previous research, par-

ticularly since several fMRI studies so far have shown abnormal ALFF

in both patients with various substance-use disorders and individuals

with psychosis.23–26 Second, acknowledging putative associations

between HCU and demographic, clinical and psychopathological vari-

ables, we supposed that distinct measures of cannabis use (particu-

larly life-time and current use) will be significantly associated with

transmodal components in distinct networks subserving executive

control and reward networks.27–29 Finally, we sought to better under-

stand the relationship between HCU-related brain networks and the

underlying molecular features.30,31 Therefore, we estimated the

effects of HCU-related structural and functional brain changes on

neurotransmitter systems, including dopaminergic, serotonergic and

μ-opioidergic transmission using a novel cross-modal data analysis

strategy. Based on previous research,17,28,32 we expected significant

associations between structural/functional networks and serotoner-

gic, dopaminergic and μ-opioid receptor systems. Understanding the

molecular architecture underlying HCU might favourably influence

the development of future disorder-specific prevention and treatment

strategies.

2 | MATERIALS AND METHODS

2.1 | Participants and MRI data

The study was carried out in the Saarland University Hospital Homburg,

Germany.33 A total of 41 participants met eligibility criteria, as outlined

below. To reduce potential gender bias,34,35 in this study, male and right-

handed participants aged between 18 and 30 years were considered.

We specifically included HCU participants using cannabis and nicotine

only. To facilitate comparisons with previous research,36–38 HCU was

defined as cannabis use during at least 10 days/month in the past

24 months and at least 240 days of cannabis use in the past 24 months.

Cannabis use criteria for controls was ≤10 joints life-time use and no

cannabis use at least 12 months prior to study participation. Current or

life-time use of any other illicit substance was an exclusion criterion for

all study subjects. Absence of other illicit drugs at the time of testing and

MRI was ascertained by qualitative drug-screenings (urine analyses) all

study subjects. Participants with a current or life-time mental disorder, as

indicated by SCID for DSM-IV-TR interviews, with a history of a neuro-

logical disease, significant head trauma or any type of medication were

excluded by structured medical history taking. In particular, current or

life-time alcohol-use disorder according to DSM-IV-TR was an exclusion

criterion. Of note, HCU individuals included in this study did not meet

diagnostic criteria for DSM-IV-TR cannabis-use disorder. In addition, the
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presence of “attenuated psychosis syndrome,” as defined by DSM-5

appendix, was defined as further exclusion criterion.

All HCU participants were evaluated using the Cannabis Use Dis-

order Identification Test (CUDIT).39,40 Further rating scales included

the Alcohol Use Disorder Identification Test (AUDIT), the Fagerström

Test,41 the German ADHD Self Rating Scale (ADHS-SB)42 and the

Hamilton Depression Rating Scale (HAMD).43 HCU participants were

asked for cannabis abstinence for at least 24 h before clinical assess-

ment and MRI. All HCU consented to these study-specific require-

ments, and none reported craving or other withdrawal symptoms prior

to MRI scanning. The study was conducted in accordance with the

Declaration of Helsinki. The study protocol was approved by the ethical

review board of the Saarland Medical Association, Saarbrücken,

Germany. Written informed consent was obtained from all participants

after the procedures of the study had been fully explained.

2.2 | MRI data acquisition

Whole-brain scans were acquired using a 3 T Magnetom Skyra (Siemens,

Erlangen, Germany) head MRI system. Structural MRI was acquired via a

magnetization-prepared rapid gradient-echo (3D-MPRAGE) sequence

with following parameters: TE = 3.29 ms, TR = 1900 ms, TI = 110 ms,

flip angle = 9�, FOV = 240 mm, slice plane = axial, voxel

size = 0.5 � 0.5 � 0.9 mm3, distance factor = 50%, number of

slices = 192. Afterwards, rs-fMRI was acquired using an echo-planar

imaging (EPI) BOLD sequence with parameters as follows: TE = 30 ms,

TR = 1800 ms, flip angle = 90�, FOV = 192 mm, slice

plane = transversal, voxel size = 3 � 3 � 3 mm3, distance factor = 25%,

number of slices = 32, PAT factor = 2, number of

measurements = 230.

2.3 | MRI data analysis

GMV data of 40 (24 HCU, 16 HC; one participant was excluded from

the analyses due to head movement >3 mm or 3� during resting state

scan) participants from Wolf et al.33 were considered. Data were

analysed via CAT12 (http://www.neuro.uni-jena.de/cat/; last access 06/

05/2021; CAT12 version r1109) implemented in SPM12 (https://www.

fil.ion.ucl.ac.uk/spm/software/spm12/; last access 06/05/2021) (see

Wolf et al.33 for details). For processing in CAT12, default parameters, as

defined in CAT12, were chosen. GMV data processing comprised spatial

normalization, segmentation and smoothing (8-mm Full Width half maxi-

mum Gaussian kernel). ALFF was calculated from the resting state data

of 41 participants via the Data Processing Assistant for rs-fMRI

(DPARSF).44 Preprocessing comprised removal of the first six scans, slice

timing, realignment, coregistration of the T1 image to functional scans,

DARTEL45 based segmentation and normalization (Montreal Neurologi-

cal Institute [MNI]–space; voxel size 3 � 3 � 3 mm3) and spatial

smoothing with a 6-mm Full Width half maximum Gaussian kernel. Indi-

vidual whole brain maps of GMV and ALFF were then entered a parallel

ICA (pICA)46,47 using the Fusion ICA Toolbox (FIT; version 2.0e; https://

trendscenter.org/software/fit/; last access: 06/11/2021). The number of

components for each modality was estimated using the minimum

description length (MDL). Five components were identified for each

modality. ICASSO30 was run 20 times to assess the consistency of the

components, and the most central run was selected to ensure replicabil-

ity and stability. Component selection was based on a two-tier approach:

First, we used the results of (two-tailed) two sample t tests on loading

parameters of HCU and HC, as implemented in FIT, to pre-select compo-

nents of potential interest. For this purpose, in order to ensure that we

will not miss subtle but potentially important effects, we chose a liberal

threshold of p < 0.1. Covariation for nuisance variables, that is, age, was

not performed at this stage, nor was correction for multiple comparisons

applied. In a second step, loading parameters for these components were

extracted and entered into two ANCOVA models—one for GMV loading

parameters and one for the loading parameters of the ALFF-component.

Both ANCOVA models were adjusted for age. For these analyses, a

nominal threshold of p < 0.05 was defined, Bonferroni-corrected for mul-

tiple comparisons (p < 0.025). Anatomical labels and stereotaxic coordi-

nates within significantly differing components were derived from

positive clusters above a threshold of z > 3.5 by linking the ICA output

images to the Talairach Daemon database (http://www.talairach.org/

daemon.html; last access: 06/11/2021). Associations between compo-

nent loadings and using behavior were tested via Spearman correlations

and regression models were applied to test how current use in terms of

frequency (d/week) and quantity (g/week) of use can be predicted best

via lifetime joints and component loadings (all seven possible combina-

tions per measure of current use).

2.4 | MRI-nuclear imaging cross-modal
correlations

Components that significantly differed between HCU and controls were

used as input for spatial correlation with PET- and SPECT-derived maps

in JuSpace (version 1; bugfix for exact p value computation manually

implemented; https://github.com/juryxy/JuSpace; last visited

06/11/2021).31 Independent z-score maps based on all 12 PET and

SPECT maps implemented in JuSpace (5HT1a_WAY_HC36,

5HT1b_P943_HC22, 5HT2a_ALT_HC19,48 D1_SCH23390_c11,49 D2_

RACLOPRIDE_c11,50 DAT_DATSPECT,51 FDOPA_f18,52 GABAa_

FLUMAZENIL_c11,51 MU_CARFENTANIL_c11,53 NAT_MRB_c11,54

SERT_DASB_HC30,48 and SERT_MADAM_c11 [https://www.nitrc.org/

projects/ki-5htt]) of HCU versus HC were computed using Spearman

correlations (based on the Neuromorphometrics atlas; exact p values,

N = 10 000 permutations; adjusted for spatial autocorrelation).

3 | RESULTS

3.1 | Demographic and psychometric data

For demographic and psychometric details of the two groups, see

Table 1. There were no significant false discovery rate (FDR)-

corrected differences between the groups (see Table 1).
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3.2 | Parallel ICA

In the first step, component pre-selection identified two components,

that is, one GMV- (p = 0.01) and one ALFF-component (p = 0.06).

ANCOVA models revealed differences between HCU and HC in both

GMV (F = 6.96, df = 1, p = 0.01) and ALFF (F = 5.00, df = 1,

p = 0.03) component loadings. The spatial pattern for GMV comprised

limbic-, thalamic-, cerebellar-, temporo-parietal- and temporo-occipital

structures. For ALFF, the component pattern included occipital-,

cerebellar-, frontal- and parietal structures (see Table 2 and Figure 1).

The GMV component survived Bonferroni correction (p < 0.025),

whereas the ALFF component did not. Nevertheless, given that sev-

eral studies so far consistently highlighted the importance of prefron-

tal cortical function in substance-use disorders,55,56 and cannabis-use

disorders in particular,29,57 the ALFF component was also considered

for subsequent MRI-nuclear imaging cross-modal correlation analyses.

3.3 | Associations between component loadings
and using behavior and prediction of current use

As expected, using behavior was highly intercorrelated (all Spearman's

ρ's > 0.7). All loading component-using behavior pairing were signifi-

cantly correlated (all Spearman's jρj > 0.30, all pFDR's < 0.05; generally,

INA was stronger correlated than GMV), except lifetime number of

joints and GMV, as well as CUDIT and GMV. GMV and INA were not

intercorrelated (see Figure 2 and Table S1).

Regression models revealed lifetime use to be the best predictor

for current use, whereas amount of current use could be predicted

better than frequency of current use (see Table 3 for details). The best

performing model (in terms of best adjusted R2 following Stein's

formula58 and using minimum amount of predictors) predicted amount

of current use using number of lifetime joints and GMV component

loadings as predictors (adjusted R2 = 0.59, p < 0.00001). MRI-nuclear

imaging cross-modal correlations between affected receptor systems

and pICA components.

Cross-modal correlations revealed associations between GMV

and the serotonergic system (5HT1b and 5HT2a) as well as between

ALFF and the serotonergic system (5HT1a, 5HT1b, SERT DASB HC30

and SERT MADAM), the dopaminergic system (D2, DAT and FDOPA)

and the μ-opioid receptor system (MU; see Figure 3 and Table 4).

4 | DISCUSSION

The present study aimed at investigating interrelationships between

GMV, INA and different neurotransmitter systems in HCU. Four main

findings emerged: First, the sMRI source identified regions within the

cerebello-temporo-thalamic network where HCU showed reduced GMV

compared to controls. Second, the rs-fMRI source localized regions

within the frontoparietal network where HCU showed reduced ALFF

compared to controls. Third, both ALFF and GMV alterations within the

respective networks were associated with using-behavior. Fourth, both

GMV and INA changes were associated with the estimated serotonergic,

dopaminergic and μ-opioid neurotransmitter binding.

4.1 | Alterations of INA and GMV components
in HCU

In accordance with our prediction, one structural component signifi-

cantly differentiated HCU from controls, suggesting that HCU-specific

TABLE 1 Demographics and psychometric scores

HCU (mean) SD Min-max HC (mean) SD Min-max Statistic p Effect sizec

Age (years) 23.13 3.00 19–28 24.81 3.45 18–29 1.6425a 0.108 0.26

BDI 6.79 7.82 0–28 2.44 3.12 0–10 274.5b 0.022 �0.36

HAMD 1.33 1.88 0–8 0.44 0.81 0.2 251b 0.070 �0.29

Years of education 14.15 2.93 9–19.5 16.34 2.86 12–20 2.3464a 0.024 0.36

ADHD-SB total 11.5 5.88 2–23 8.19 8.92 0–26 259.5b 0.063 �0.29

Tobacco per year (pack years) 3.33 5.71 0–25.5 1.25 5.00 0–20 301b <0.001 �0.53

Joints lifetime 3731.25 4553.59 350–18 000 1.625 2.9 0–10 384b <0.001 �0.85

CUDIT total 17.63 8.88 4–36 0 0 0–0 384b <0.001 �0.86

Onset age 17.73 3.04 11–25 0 0 0–0 384b <0.001 �0.87

Duration use (years) 4.56 3.73 1–14.5 0 0 0–0 384b <0.001 �0.87

Current use (d/week) 5.65 1.67 2–7 0 0 0–0 384b <0.0011 �0.88

Current use (g/week) 6.06 6.39 0.25–28 0 0 0–0 384b <0.001 �0.86

Note: Significant results (pFDR < 0.05) in bold font.

Abbreviations: ADHD-SB, attention-deficit/hyperactivity disorder self rating scale; BDI, Beck Depression Inventory; CUDIT, Cannabis Use Disorder

Identification Test; HAMD, Hamilton Depression Scale; HC, control group (n = 16); HCU, heavy cannabis users (n = 24); SD, standard deviation; STAI,

State–Trait Anxiety Inventory.
at value.
bWilcoxon rank-sum test value.
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pathology may lie in reduced GMV of cerebello-temporo-thalamic net-

work. This is particularly interesting for a number of reasons: First, cere-

bellum is a region with a high expression of CBD1 receptor and might

be highly affected by cannabis.59 Recent sMRI studies also showed

reduced cerebellar GMV in HCU.60,61 Furthermore, according to fMRI

studies, cannabis might modulate signalling pathways and functional

connectivity (FC) from cerebellum to other brain regions such as thala-

mus and cortex.27,62 These findings together with the present study

corroborate the crucial role of cerebellar network in cognitive control of

HCU. Second, there is a consistent body of literature supporting tempo-

ral lobe alterations underlying HCU.60 Furthermore, according to a lon-

gitudinal sMRI study by Koanders et al.,63 GMV alterations of the

medial temporal lobe is considered to be a pre-existing risk factor for

later HCU. Third, thalamus is crucial for incentive and reward

processing.57,64 Emerging evidence from fMRI studies (including cue-

reactivity fMRI tasks) suggests aberrant thalamus activity in cannabis

users.65 Fourth, we also identified GMV alterations of the cingulate

gyrus and anterior cingulate cortex (ACC) in HCU. ACC is crucial for

integrating cognitive and emotional processes in support of goal-

directed behavior.66 A recent fMRI study showed that cingulate activa-

tion was correlated with self-reported craving in individuals with canna-

bis use disorder. Interestingly, a recent magnetic resonance

spectroscopy (MRS) study67 showed that significant interaction

between dACC glutamate levels and monthly cannabis may predicted

the functional connectivity between dACC and nucleus accumbens

(NAc). This study was also able to show that cannabis is detrimental to

both intrinsic neural connectivity (see also Raymond et al.68) and

neurochemistry in regions responsible for reward processing.67 How-

ever, no previous study on HCU has found changes in the cingulate cor-

tex.36,69,70 Taken together, altered structural and functional patterns of

temporal regions and basal ganglia may eventually lead to the disturbed

reward system and difficulties to interrupt risk-taking behavior as it is

known from HCU or other strong drug users.

Furthermore, we chose to investigate neural correlates of HCU

with resting-state fMRI, because functional brain alterations underly-

ing HCU might be intrinsic and therefore they may be better exam-

ined at rest without the confounders of a non-ecological setting

(e.g., scanner and paradigm) and the individual's motivational bias. The

identified frontoparietal network comprising frontal gyrus, superior

and inferior parietal lobule, and precuneus is crucial for understanding

of neuronal mechanisms underlying HCU for three reasons: First,

functional abnormalities of the inferior frontal cortex are associated

with aberrant response inhibition.71,72 According to Charboneau

et al.,28 visual cues of cannabis increased craving and activated infe-

rior frontal gyrus in cannabis-dependent adults. Surprisingly, no other

fMRI studies could be found that identified aberrant functioning of

the middle or superior frontal gyrus as neuronal correlates of HCU.

Second, the frontoparietal network includes the orbitofrontal cortex

(OFC). The OFC is crucial for cognitive control and emotion regulation

and processing, and hence it is highly interconnected with cingulate/

medial prefrontal, premotor and parietal cortical areas.73 Previous

studies highlighted the association between structural and functional

alterations of the OFC and SUD suggesting a direct substance expo-

sure on the brain.56,74 Furthermore, Wade et al. showed that larger

TABLE 2 Spatial characteristics of identified components of interest

Component
Brodmann area

L R

Volume (cc) L/RRegion z-Score/MNI (x, y, z) z-Score/MNI (x, y, z)

GMV

Parahippocampal Gyrus 28, 34 6.5 (�23, �6, �20) 6.0 (23, �5, �20) 0.8/1.0

Thalamus - 5.9 (�8, �18, 11) 5.7 (8, �18, 11) 0.8/0.8

Uncus - 5.5 (�23, �3, �23) 5.3 (23, �2, �23) 0.4/0.3

Declive - 4.4 (�21, �65, �18) 5.1 (21, �77, �23) 0.5/1.5

Anterior Cingulate 24, 33 - 4.8 (3, 24, 24) �/0.5

Cingulate Gyrus 23, 24, 31, 32 4.0 (�2, �32, 33) 4.7 (3, 17, 30) 0.4/0.8

Supramarginal Gyrus 40 - 4.7 (53, �42, 35) �/0.4

Fusiform Gyrus 19 - 4.6 (24, �80, �21) �/0.4

INA

Lingual Gyrus 17, 18 - 6.7 (9, �96, �21) �/0.3

Declive - - 6.2 (15, �90, �27) �/0.4

Middle Frontal Gyrus 6, 10, 11, 47 6.0 (�33, �6, 60) - 2.0/�
Superior Frontal Gyrus 6, 8, 9, 10, 11 4.1 (�6, 6, 66) 5.3 (27, 66, �6) 0.4/1.1

Superior Parietal Lobule 7 4.8 (�36, �60, 57) 5.1 (30, �72, 51) 0.3/0.6

Precuneus 7 - 4.6 (24, �72, 51) �/0.3

Inferior Parietal Lobule 40 4.5 (�45, �48, 57) - 0.3/�

Note: Voxels with z > 3.5 were coupled with the Talairach Daemon database to provide anatomical labels and were translated into MNI space. For each

hemisphere (L = left; R = right), the maximum z-value and MNI coordinate are provided. The volume of voxels in each area is provided in cubic

centimetres (cc); the table displays clusters >0.2 cc.
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OFC (probably due to aberrant maturation) can predict cannabis initia-

tion in adolescents.75 Interestingly, according to a longitudinal study

by Camchong et al.,76 lower FC between OFC and ACC at baseline

predicted higher amounts of cannabis use during the following

18 months in cannabis use disorders. Taken together, aberrant fronto-

parietal networks might lead to disturbance of coordinating behavioral

control and finally to HCU.

4.2 | INA and GMV components underlying
specific HCU-related behavior

Recent evidence suggests that long-term cannabis can cause different

psychopathological, psychomotor and cognitive symptoms in both

healthy individuals and psychiatric patients.33 However, little is known

about the exact effects of immediate and chronic dose-dependent

effects of cannabis on the structure and function of brain networks.77

Especially when HCU or patients with manifest SUD are studied, the

question of the immediate and chronic dose-dependent effects

(smoking topography) on brain networks is particularly relevant for

methodological reasons.78 What is further important is the extent to

which the levels of cannabis exposure modulate brain structure and

function, because differences between HCU or SUD and controls

might depended on the levels of THC relative to CBD.79 This also

depends on the current use (in grams) of cannabis. The present study

found that current cannabis use is associated with GMV and INA

alterations that predominantly include cerebello-temporo-thalamic

network. These findings corroborate previous evidence from sMRI

F IGURE 1 Visualization of
component patterns and loadings.
(A) Left: overlays of the component
pattern of GMV onto a brain template
(axial slices). Right: boxplot of
component loadings by group
(p = 0.01; ANCOVA, adjusted for
age). (B) Left: overlays of the
component pattern of INA onto a

brain template (axial slices). Right:
boxplot of component loadings by
group (p = 0.03; ANCOVA, adjusted
for age). Please note that for the
ALFF component, differences
between HCU and HC did not survive
Bonferroni correction for multiple
comparisons (see also main test,
Section 3). Colour bars depict z-
values. HC, control group; HCU,
heavy cannabis use group
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and fMRI studies in individuals with HCU. Previous sMRI study on

chronic HCU identified GMV decrease in frontal, temporal and left

occipital gyrus when compared with healthy controls.60 Interestingly,

Cousinjn et al.36 found that in HCU, GMV of the amygdala and hippo-

campus are negatively correlated with the amount of cannabis use.

Similar results were identified by Koenders et al.63 who found a nega-

tive correlation between cannabis dose (in grams) and regional GMV

of the left hippocampus, amygdala and superior temporal gyrus. In a

longitudinal MRI study, Koenders et al.80 found that cannabis dose

(in grams) did not affect hippocampal volumes in HCU. Interestingly, a

F IGURE 2 Correlograms between
component loadings and using behavior. The
shape of the ellipse represents the extent of the
correlation between two variables, more circular
when two variables are uncorrelated. The slope
of the longest axis of the ellipse indicates the
direction of the correlation, with a positive slope
indicating a positive correlation. Black
background highlights correlations surviving

p < 0.05 FDR-correction. Note that for display
purposes, no background-highlighting was done
for using behavior intercorrelations. Colour bar
depicts Spearman's ρ

TABLE 3 Prediction of current use via lifetime use and/or component loadings

Measure of current use Predictors Multiple R2 Adjusted R2 (Stein) p model

D/week

Joints lifetime 0.28 0.22 0.0004548

GMV 0.19 0.12 0.005556

ALFF 0.1 0.03 0.04827

Joints lifetime, GMV 0.39 0.3 0.000107

Joints lifetime, ALFF 0.36 0.27 0.0002785

GMV, ALFF 0.25 0.15 0.00468

Joints lifetime, GMV, ALFF 0.45 0.33 0.00007825

G/week

Joints lifetime 0.57 0.53 <0.00001

GMV 0.17 0.11 0.007711

ALFF 0.04 �0.04 0.2155

Joints lifetime, GMV 0.64 0.59 <0.00001

Joints lifetime, ALFF 0.59 0.53 <0.00001

GMV, ALFF 0.19 0.08 0.01878

Joints lifetime, GMV, ALFF 0.66 0.59 <0.00001

Note: Significant results (pFDR < 0.05) in bold font. Adjusted R2 was calculated using Stein's formula, see Stevens.58
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previous multi-site-mega-analysis showed that in individuals with can-

nabis dependence OFC volume was associated with higher monthly

cannabis dosage.81 Furthermore, this study highlighted the distinction

between cannabis use and dependence based on subregions of

OFC.81 However, there are also contradictory results that suggest

cannabis use has no effect on structural brain morphology.82 Previous

fMRI studies in HCU showed a relationship between chronic cannabis

use and aberrant rsFC in the default mode network (DMN), posterior

cingulate cortex, cerebellum and supramarginal gyrus.34 Cannabis

exposure was also associated with attenuation of the negative corre-

lation between the striatum and the fusiform gyrus.55 A combined

MRS and fMRI study showed THC-dose-dependent increase of

striatal glutamate concentrations and dopamine as indicated by

reduced FC between NAc and cortical regions.83 A more recent com-

bined MRS and fMRI study showed that FC between the dorsal ACC

and right NAc was predicted by the interaction between dorsal ACC

glutamate levels and monthly cannabis use.67 Contradictory to the

present study, Kuhns et al.84 showed that cue-induced ventral teg-

mental area (VTA) but not dorsal ACC activity was positively corre-

lated with grams per week of cannabis. Furthermore, another fMRI

studies did not find any correlation between brain activity level of

cannabis use.85

4.3 | Association between GMV-INA components
and neurotransmitter activity maps

Surprisingly, neuroimaging studies on cannabis, serotonergic system and

INA/GMV in humans have not been published yet. Therefore, the

discussion of the above mentioned findings can only be annexed to ani-

mal studies. First, we found an association between HCU-related GMV

alterations within the cerebello-temporo-thalamic network and 5HT1b

and 5HT2a activity maps. Accordingly, Bambico et al.86 found that THC

might enhance tonic 5-HT1A receptor activity in the rat hippocampus

and suggested that endocannabinoid enhancers might possess antide-

pressant effects at low doses. Second, there was also an association

between HCU-related frontoparietal INA alterations and 5HT1a and

5HT1b activity maps. This finding corroborate previous findings from

animal studies that showed cannabis-induced uncoupling of brain rsFC

in the raphe nuclei87 and vulnerability of the 5-HT system and anxiety

symptom.10 Another animal study by Vinals et al. found that 5-HT2A

and CB1 receptors interact in the mice brain and mediate the memory

impairment induced by THC.88 Interestingly, Galindo et al. found

5-HT2A and CB1 heteromer expression to be significantly increased in

cannabis users. Further, schizophrenia (SZ) is also characterized by sero-

tonergic and endocannabinoid systems dysregulation.89 A recent study

by Guinart et al.89 showed that 5-HT2A and CB1 heteromer expression

is modulated by cannabis in SZ patients. Further, clozapine

(an antipsychotic drug) treatment in SZ patients modulated the 5-HT2A

and CB1 heteromer expression, but cannabis use (SZ patients with can-

nabis) prevented these alterations.89 Third, the association between

HCU-related frontoparietal INA alterations and dopaminergic system

supports the previous evidence that cannabinoids/endocannabinoids

directly interact with the dopaminergic system (e.g., stimulating mes-

olimbic dopamine32).90 The interaction between cannabis products and

the human reward system is also clinically relevant. Furthermore, the

present findings are noteworthy as they could open up a new avenue

into a potential interaction between HCU-associated neural changes

F IGURE 3 Barplots of cross-modal
correlations between receptor systems and
pICA components. (A) Correlations between
GMV and receptor systems (for p values, see
Table 4). (B) Correlations between INA and
receptor systems (for p values, see Table 4).
The two SERT-labelled bars each are from left
to right SERT DASB HC30 and SERT
MADAM
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and SZ pathophysiology, a disorder, for which HCU is a well-known

major environmental risk factor. In this regard, our results are consistent

with a recent study by Chase et al. which combined activation likelihood

estimate (ALE) meta-analysis with meta-analytic functional connectivity

modelling.91 The authors reported interconnections between aberrant

ventral striatal activation and sensorimotor regions, particularly pre-sup-

plementary area, midbrain and cerebellum in SZ. That meta-analysis,

together with findings of this study, supports the notion of a neurobio-

logical link between HCU-related changes and alterations of the reward

system, as observed in SZ. Of note, our findings in HCU are in line with

recent work by Chen et al.,30 which found that higher densities of dopa-

minergic and serotonergic transporters as well as elevated dopamine-

synthesis-capacity are related to intrinsic connectivity patterns of net-

works associated with theory-of-mind, as well as social cognitive and

affective processing. Importantly, these networks allowed the prediction

of cognitive impairment in SZ patients. Similar mechanisms could possi-

bly also account for cognitive impairment that has been frequently

reported in HCU.92 Overall, better understanding and targeting of the

interaction between HCU-related neuronal abnormalities and cognitive

as well as reward systems might help to develop novel treatments of

SUD.

Eventually, the interaction between HCU-related structural and

functional brain alterations and opioid system is important, especially

from a clinical perspective, because patients with SUD very often use

both cannabis and opioids. This may reflect system levels that have

been previously highlighted as both risk and protection factors in can-

nabis/cocaine/opioid use disorders.93 Taking the above mentioned

results into account together with the fact that opioid analgesics such

as fentanyl, tramadol, and methadone are serotonin transporter inhibi-

tors (e.g., 5-HT), it becomes evident that endocannabinoid, serotonin

and opioid neurotransmitter systems interact with each other. Inter-

estingly, a recent systematic review showed that cannabis use does

not compromise the therapeutic outcome of patients with opioid

dependence.94 In addition, cannabis products are discussed as substi-

tutes or savings for opioids in pain management.20 Eventually, recent

studies showed that allosteric negative modulators of CB1 receptors

and drugs targeting CB2 receptors are promising agents for the treat-

ment of SUD (for review see Manzanares et al.95), because they might

modulate the addictive properties of several drug classes.90 Therefore,

we strongly acknowledge future multimodal neuroimaging studies

that will prove the advantages (CBD) and disadvantages (THC) of can-

nabis in SUD. In the case of CBD, this is feasible since approved medi-

cation is already available.

4.4 | Strengths and limitations

Strengths of this study include the examination of joint function–

structure alterations, JuSpace toolbox allowing for examination of a

variety of neurotransmitter systems and clinically well-characterized

sample of male participants with HCU presenting without major men-

tal disorders and without current or a history of attenuated psychotic

symptoms. Nevertheless, this study has several potential limitations.

First, we used cross-sectional data. Second, we used a relatively mod-

est sample size, which may have missed more subtle effects at the

structural and functional systems level. Third, we examined an exclu-

sively male population. In this particular case, we chose to investigate

male HCU only because certain brain functions are differently repre-

sented and modulated in left- and right-handed males or females.96

Further, we also sought to control for cerebral asymmetries which

may putatively induce noise in neuroimaging findings.97 This said, we

acknowledge that the present findings may apply to right-handed indi-

viduals only and that future research will need to address the impact

of handedness and laterality in HCU in more detail. Fourth, the exclu-

sion of individuals with “attenuated psychosis syndrome” as defined

by DSM-5 appendix might be considered as potential selection bias.

We acknowledge that this could be indeed the case given the fre-

quent co-occurrence of HCU and attenuated psychotic symptoms

(APS). However, in this study, we explicitly renounced the inclusion of

individuals presenting with APS in order to exclude potential bias for

any other comorbid mental disorder or risk behavior except HCU.

TABLE 4 Associations between pICA components and
neurotransmitter activity maps

Component

PET map

Mean Fisher's z

(Spearman's rho) p (parametric)

GMV

5HT1a �0.097 0.295

5HT1b �0.297 0.002

5HT2a �0.273 0.004

D1 �0.140 0.133

D2 0.109 0.242

DAT 0.020 0.829

FDOPA 0.077 0.409

GABAa �0.169 0.071

MU �0.150 0.107

NAT 0.021 0.820

SERT DASB HC30 0.029 0.757

SERT MADAM �0.008 0.934

INA

5HT1a 0.286 0.002

5HT1b 0.305 0.001

5HT2a 0.157 0.092

D1 �0.018 0.844

D2 �0.199 0.033

DAT �0.498 <0.001

FDOPA �0.204 0.029

GABAa 0.069 0.458

MU 0.463 <0.001

NAT �0.185 0.047

SERT DASB HC30 �0.258 0.006

SERT MADAM �0.213 0.023

Note: Significant results (pFDR < 0.05) in bold font.
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Nevertheless, given the clinical relevance of APS in HCU, future

MRI studies will need to address the impact of such comorbidity in

more detail, preferably within a longitudinal framework. Keeping the

above mentioned limitations in mind, this study provides a first

multilevel neuromechanistic understanding of HCU, particularly with

respect to aberrant cerebello-temporo-thalamic network and related

neurotransmitter systems, and a first starting point for future

research that has to elucidate neurobiological underpinnings of HCU

in more detail.

4.5 | Concluding remarks

The present findings add to the growing evidence that HCU are

characterized by both structural and functional disruptions of net-

works as well as neurotransmitter systems underlying cognitive con-

trol, goal-directed behavior and the reward system. In conjunction

with findings from recent MRI studies, structural and functional alter-

ations within the above mentioned networks and their interaction

with multiple neurotransmitter systems enhance our understanding

why HCU persist to use cannabis despite negative consequences of

such behavior.
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