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Involvement of the ghrelin system in the maintenance and
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Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy
for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex
biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin
by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-
conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by
cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral
tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist,
dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished
animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and
cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of
peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by
cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that
the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and
targeting this system may be viable for mitigating cocaine use disorder.

Neuropsychopharmacology (2022) 47:1449–1460; https://doi.org/10.1038/s41386-021-01249-2

INTRODUCTION
The addictive properties of cocaine relate to its ability to enhance
dopamine (DA) transmission in the reward circuitry-crucially
involving DA neurons originating from the substantia nigra and
ventral tegmental area (VTA) [1, 2]. Chronic cocaine-induced
adaptations within the DA system, as well as local or distal inputs
to this system, are critical for development of the drug-seeking
and drug-taking behaviors that characterize addiction [3–7].
Besides the neuronal input control, VTA DA neurons are sensitive
to changes in metabolic state and respond to a variety of state
regulators arising from peripheral sources, as feeding increases DA
release with a greater magnitude in hungry versus sated animals
[8, 9]. Congruently, changes in the actions of a variety of appetite-
regulating hormones in the VTA modifies not only DA release but
also behaviors associated with both food and rewarding drugs
[10–13]. We have recently reported that both cocaine-taking and
anticipation of cocaine in rats are associated with dysregulation of
a variety of appetite-regulating hormones with a decline in

anorexic and an elevation in orexigenic hormone levels in
circulation, respectively [14]. However, the specific roles of most
of these hormones in the rewarding and motivational effects of
cocaine remain to be fully explored.
Ghrelin, a 28-amino acid orexigenic hormone, is most recog-

nized for its role in stimulating growth hormone release and
regulating feeding-related behaviors [15–18], via the growth
hormone secretagogue receptor 1a (GHS-R1a, also termed ghrelin
receptor [19, 20]). The post-translational acylation at the serine-3
residue, which is mediated by the membrane-bound enzyme
ghrelin O-acyltransferase (GOAT) at the secretion sites, is essential
for ghrelin to gain its binding property to GHS-R1a [19, 20].
Secreted ghrelin can be deactivated following degradation by
either proteolysis into inactive fragments or by plasma esterase-
mediated de-acylation to des-acyl ghrelin (DAG), the inactive form
of ghrelin [21], and ghrelin action can be compromised by liver-
expressed antimicrobial peptide 2 (LEAP2), a recently character-
ized endogenous GHS-R1a antagonist [22] that fluctuates in an
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opposite direction with ghrelin during either food deprivation or
refeeding [23, 24]. Thus, it is likely that the dynamic signaling
process of these ghrelin-related hormones may determine
functional diversity of the ghrelin system.
The role of ghrelin in addiction has been more frequently

studied in relation to alcohol use. Ghrelin levels in alcohol-
dependent patients positively correlate with alcohol craving and
risk of relapse [25, 26] (for a review, see: [27]). Exogenous ghrelin
administration increases cue-induced alcohol craving [28] and
alcohol self-administration [29] in alcohol-dependent heavy-
drinking individuals, an observation consistent with several rodent
studies [30] (for reviews, see: [30, 31]). With psychostimulants,
ghrelin, administered either systemically or centrally, potentiates
cocaine-induced locomotor activity and conditioned place pre-
ference (CPP) [32–34] whereas blockade of GHS-R1a significantly
attenuates these effects [35–38]. The roles of ghrelin signaling in
cocaine self-administration and reinstatement have not yet been
explored.
The aim of the present study was to determine whether

cocaine-motivated behaviors impact the function of the endo-
genous ghrelin system, and whether such an impact, if any, plays a
role in cocaine-motivated behaviors. We first assessed the effects
of cocaine self-administration, cocaine-seeking and yoked infu-
sions of cocaine or cocaine methiodide (an enantiomer of cocaine
that does not cross the blood-brain barrier) on fluctuations of
plasma ghrelin, DAG and LEAP2 levels and the effects of
acquisition of cocaine self-administration on GHS-R1a mRNA
expression in VTA neurons. We next assessed the effects of GHS-
R1a blockade by JMV2959 on cocaine self-administration, on
cocaine-seeking either driven by the stimuli associated with
cocaine self-administration or triggered by priming injection of
cocaine or on brain stimulation reward (BSR) maintained by
optogenetic stimulation of VTA DA neurons. Finally, as cocaine is a
sympathomimetic and sympathetic action at β1 adrenergic
receptors plays a major role in ghrelin secretion [39, 40], we
assessed whether GHS-R1a blockade plays a role in reinstatement
of cocaine-seeking triggered by yohimbine, a potent activator of
the noradrenergic system, and whether there is an involvement of
β1 receptors in cocaine-induced ghrelin elevation and cocaine-
motivated behaviors following pretreatment with atenolol, a
peripherally active β1 antagonist.

MATERIALS AND METHODS
Subjects
Male Long-Evans rats (Charles-River Laboratories, Raleigh, NC, USA.) were
used for all experiments except BSR testing for which male DAT-Cre mice
were used. Upon arrival, animals were group-housed in an animal facility
under a reversed 12 h light-dark cycle (light on at 7:00 PM) with free access
to food and water and allowed to acclimate to the new environment for at
least 7 days prior to study initiation. Male DAT-Cre mice used in the BSR
experiments were bred at the National Institute on Drug Abuse, Intramural
Research Program (NIDA-IRP) using heterozygous animals and their
genetic background has been reported previously [41]. All procedures
were approved by the Animal Care and Use Committee of the National
Institute on Drug Abuse (NIDA) and were consistent with the Guide for the
Care and Use of Laboratory Animals (8th edition, National Research
Council, 2011).

Animal surgery
Rats (275–325 g) were surgically implanted with a micro-renathane
intravenous catheter (Braintree Scientific Inc., Braintree, MA, USA) under
ketamine and xylazine (90 and 10mg/kg i.p., respectively) anesthesia
according to procedures described previously [42]. After surgery, the
catheters were flushed daily with a gentamicin–heparin–saline solution
(0.1 mg/ml gentamicin and 30 IU/ml heparin, ICN Biochemicals, Cleveland,
OH, USA) to prevent catheter clogging and infection. The animals were
allowed to recover for at least 5 days before behavioral training started.
DAT-Cre mice (∼4 weeks of age) used in BSR testing were first

anesthetized with ketamine and xylazine, followed by a stereotaxic

injection of 150 nl of adeno-associated virus solution that carries
channelrhodopsin-2 and enhanced green fluorescent protein (AAV-EF1a-
DIO-ChR2-EGFP; ∼2 × 1012 genomes/ml, UNC Vector Core, University of
North Carolina at Chapel Hill, NC, USA) bilaterally into the VTA using a
micropump (Micro-4, World Precision Instrument, Sarasota, FL, USA) at a
speed of 50 nL/min. The coordinates for VTA injection were AP+ 3.28mm,
ML ± 1.2 mm, and DV− 4.48mm inserted with a 10° angle toward the
midline [43]. Following the virus injection, bilateral custom-made ferrule
fibers (Inner diameter, 200 μm, Thorlabs, Newton, NJ, USA) were implanted
0.1 mm above the injection site. The mice were then allowed to recover for
at least 4 weeks, to enable full AAV expression and ChR2 trafficking, before
optical self-stimulation experiments began.

Self-administration training
Cocaine self-administration training was conducted in an operant
conditioning chamber (Med Associates Inc., Georgia, VT, USA) according
to procedures described previously [44]. Briefly, following recovery from
surgery, each rat was transported to the training room and allowed to
lever-press for cocaine at a unit dose of 1 mg/kg/infusion under fixed ratio-
1 (FR-1) reinforcement during a daily 3-hr session for 14 days. Saline-
trained rats in experiment 1 were simply exposed to the same
environment and their active lever-presses resulted in saline infusion.
Animals used to test the effects of yoked drug infusions on hormone levels
in Experiment 1 were trained under the same conditions but during a daily
4-hr session.

BSR training
The procedure for BSR training was described in detail previously [41].
Briefly, following recovery from surgery, mice were trained to respond on
the active lever in standard mouse operant chambers (Med Associates Inc.)
for a 1‐s pulse train of laser stimulation at 473 nm wavelength (20 mW, 5
ms duration, 25 Hz) in daily, 1‐hr sessions. Inactive lever responses were
recorded but had no scheduled consequences. After acquiring stable
responding for 1‐week, mice were trained on a rate‐frequency program
during which six stimulation frequencies (100, 50, 25, 10, 5, and 1 Hz) were
available for self‐stimulation in descending order for 10‐min each. Once
stable responding with < 20% variation across 3 consecutive sessions was
established, the test phase began.

Experiment 1: Ghrelin signaling in response to cocaine-
motivated behaviors
To assess the effects of cocaine-motivated behaviors on ghrelin signaling,
we measured the fluctuations of plasma ghrelin, DAG and LEAP2 levels in 8
cocaine-trained and 8 saline-trained rats following giving them an
additional session after training. Another 8 cocaine-trained rats were
tested following an extinction session. Blood samples (0.3 ml) were taken
from each rat via the i.v. catheter that was used for drug or saline infusions
immediately before the test session, 1 h into the session and at the end of
session (3 hr). Samples were immediately transferred into EDTA coated
tubes that contained p-hydroxymercuribenzoic acid in a final concentra-
tion of 1 mM to preserve ghrelin from degradation, and centrifuged at 4 oC,
4000 g for 15 min. The supernatant from each sample was stored at −80 °C
until they were assayed.
Ghrelin and DAG levels were assayed using ELISA kits from ALPCO

(Salem, NH, USA). LEAP2 levels were assayed using ELISA kits from
MyBioSource, Inc. (San Diego, CA, USA). Sample collection and storage, as
well as hormone assays were performed following the manufacturer’s
instructions. The intra- and inter-assay variations were less than 7 and 8%
for ghrelin and DAG, 10 and 12% for LEAP2 respectively. Hormone levels
were interpolated using the four-parameter logistic regression for standard
curve fitting for each ELISA plate.
The fluctuations of plasma ghrelin and DAG were tested in 6 additional

groups (3 cocaine-trained and 3 saline-trained) to assess the contributions
of conditioned stimuli and cocaine’s peripheral action to the ghrelin
responses. On the following day following completion of training, one
group from each training condition were simply given another session
under their training conditions. The remaining 2 groups from each training
condition received unearned infusions of either cocaine or cocaine
methiodide (1.3 mg/kg/infusion, the same molar concentration of 1 mg/
kg cocaine), a synthetic cocaine analog that does not cross the blood-brain
barrier [45], “yoked” to the earned infusions of an executive rat in the
cocaine-self-administration group. Blood samples were collected at 0, 0.5, 2
and 4 h into the session, and processed as described above.
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To assess the effects of cocaine self-administration on VTA GHS-R1a
mRNA levels, eight additional rats were used – four trained for cocaine self-
administration and another four trained for saline self-administration. On
the day following completion of training, the animals were euthanized
before the regular training session and the brains were extracted and
stored as described previously [46]. GHS-R1a mRNA levels in VTA neurons
were analyzed using RNAscope Multiplex Fluorescent Reagent kits
according to the manufacturer’s instruction [Advanced Cell Diagnostics
(ACD), Newark, CA, USA]. Briefly, immediately before brain slicing, each
brain was placed on a cryostat (CM 3050 S) at −20 °C for 1 h for
temperature equilibration and then coronal sections were cut at 16 μm
thickness and mounted directly onto Super Frost Plus slides (Fisher, Cat.
no. 12-550-15). The slide fixation, protease pretreatment, probe hybridiza-
tion, signal preamplification and amplification, and fluorescent labeling
steps were carried out according to the User Manual for Fresh Frozen Tissue
(ACD, Inc). Four RNAscope probes – Ghsr1a (Cat. #431991), Slc6a3 (Cat. #
319621-C2), Slc32a1 (Cat. # 424541-C3) and Slc17a6 (Cat. # 317018-C3) –
were used to detect GHS1a mRNA, DAT mRNA, and vGlut2 mRNA in the
VTA, respectively (ACD Inc). Fluorescent images of labeled cells in the VTA
were captured using a KeyenceX-BZ800 microscope. The mRNA signals in
each individual cell were processed and quantified using Keyence Image
Analyzer software.

Experiment 2: GHS-R1a antagonism of cocaine-motivated
behaviors
JMV2959 on cocaine-taking and cocaine-seeking. Four groups of rats (n= 8)
were randomly assigned in these experiments following completion of the
initial training sessions. Daily self-administration of cocaine continued until
average drug infusions/session varied less than 10% over 3 consecutive
sessions (14-18 sessions). On the test day, the 4 groups of rats were first
systemically injected with either vehicle (saline) or a dose of JMV2959 (0.3,
3, or 6 mg/kg, i.p.). Cocaine self-administration testing began 15min after
the drug pretreatment. Following completion of the self-administration
testing, the rats were allowed to self-administer cocaine for 4 additional
sessions. On the following day, they were pretreated with either vehicle or
one of the 3 doses of JMV2959. Fifteen minutes following JMV2959
pretreatment, the animals were tested in an extinction session during
which saline was substituted for cocaine. Animals’ responses on the levers
and drug or saline infusions during the 2 tests were recorded.
JMV2959 on reinstatement of drug-seeking triggered by cocaine and

yohimbine. To assess whether ghrelin signaling plays a role in reinstate-
ment, 7 groups of rats (n= 8 each) were first trained for cocaine self-
administration as described above and then underwent extinction
sessions. The extinction sessions were identical to the self-administration
sessions except that animals’ responses on the active lever produced no
scheduled consequences. Extinction sessions continued until the animals’
average active lever-presses/session decreased to less than 10 over 3
consecutive sessions. Reinstatement testing was performed on the day
following the completion of extinction training. Four groups were first
pretreated with either saline or one of the 3 doses of JMV2959 (0.3, 3 and
6mg/kg, i.p.) 15 min before a cocaine challenge (10mg/kg, i.p.). The
remaining 3 groups were pretreated with either saline or one of the 2 high
doses of JMV2959 before a yohimbine challenge (1.5 mg/kg, i.p.). The
animals were allowed to lever-press for another extinction session
immediately following cocaine or yohimbine challenge. Their responses
on the active and inactive levers were assessed.
JMV2959 on BSR maintained by optogenetic stimulation of VTA DA

neurons. To assess whether the ghrelin system plays a role in mesolimbic
DA function, 7 mice were repeatedly pretreated with saline and two doses
of JMV2959 (6, 12mg/kg, i.p.) 15 min before the test session after training.
The 3 tests were separated by 3 additional training sessions. Eight
additional mice were used to assess the involvement of ghrelin in the
potentiating effects of cocaine on BSR. They were pretreated with saline or
JMV2959 (6 or 12mg/kg, i.p.) 15min prior to either saline or cocaine (4mg/
kg, i.p.) and their responses on the levers at various stimulation frequencies
were measured during the test session.

Experiment 3: Effects of atenolol on ghrelin levels and
cocaine-motivated behaviors
Twenty-four cocaine-trained rats were divided into 4 groups (n= 6 each)
following completion of cocaine self-administration training – 2 pretreated
with atenolol (15mg/kg, i.p.) and another two with vehicle (water). Thirty
min later, one group from each pretreatment was challenged with an
injection of cocaine (10mg/kg, i.p.) and the remaining two groups with

saline. Blood samples for ghrelin and DAG assay were collected
immediately before cocaine or saline challenge (0 h), and 1 and 3 h
following last injection. After blood collection, rats were redistributed into
3 groups and allowed to self-administer cocaine for 4 additional sessions
and challenged on the next day with either vehicle or one of the two
atenolol doses (5 or 15mg/kg, i.p.) 30min before a self-administration test
session. Following completion of the self-administration test, the animals
were put on extinction training as describe previously. Cocaine-triggered
reinstatement test was performed on the following day after completion of
the extinction training, 30 min after vehicle or atenolol pretreatment (5 or
15mg/kg) and immediately after cocaine challenge. Animals’ responses on
the levers were recorded.

Drugs
Cocaine HCl, ketamine HCl and xylazine HCl were obtained from the NIDA-
IRP research pharmacy. Cocaine methiodide was synthesized at NIDA-IRP.
JMV2959 and atenolol HCl and yohimbine HCl were purchased from
MilliporeSigma (St. Louis, MO, USA).

Data analysis
All data were expressed as means ± SEM and were analyzed using one or
two-way ANOVA, as appropriate. Significant main effects and interactions
were followed by post hoc Student–Newman–Keuls tests for multiple
group comparisons. Statistical analyses were performed using SigmaPlot
12 software (Systat Software, Inc., San Jose, CA, USA) and statistical
significance was defined by P < 0.05. Data from RNAscope analysis were
analyzed using a two-tailed Student’s t-test.

RESULTS
Ghrelin and DAG levels are robustly elevated by actual and
anticipated cocaine
Fig. 1A shows the fluctuations of mean (±SE) plasma ghrelin, DAG
and LEAP2 levels in response to cocaine self-administration and
extinction. Ghrelin and DAG levels were elevated during both self-
administration and extinction testing. The elevations peaked at
the end of the cocaine self-administration session while extinction
responding resulted in significantly higher elevations of both
ghrelin and DAG at 1 h into the test session. A two-way ANOVA for
repeated measures over time revealed significant main effects of
Time and Group and a significant Time x Group interaction for
both ghrelin (Time, F2, 15= 16.25, P < 0.001; Group, F2, 30= 38.52,
P < 0.001, Interaction, F4, 30= 20.43, P < 0.001) and DAG (Time,
F2, 15= 4.22, P < 0.05; Group, F2, 30= 26.69, P < 0.001, Interaction,
F4, 30= 7.65, P < 0.001). Neither cocaine self-administration nor
extinction responding significantly altered plasma LEAP2 levels.

Cocaine self-administration experience is associated with
enhanced responses of ghrelin and DAG to cocaine and
upregulation of VTA GHS-R1a mRNA expression
Yoked cocaine infusion significantly elevated plasma ghrelin and
DAG levels in both cocaine- and saline-experienced rats with a
significantly higher magnitude seen in the cocaine-experienced
group (Fig. 1B, left panel). A two-way ANOVA revealed significant
effects of Time, Group and Time x Group interaction for both ghrelin
(Time, F3, 23= 18.02, P < 0.0001; Group, F3,69= 79.58, P < 0.0001,
Interaction, F9, 69= 10.39, P < 0.0001) and DAG (Time, F3, 23= 3.61,
P < 0.05; Group, F3,69= 21.83, P < 0.0001, Interaction, F9, 69= 4.10,
P < 0.001). Yoked cocaine methiodide raised ghrelin and DAG only
in the cocaine-experienced rats (Fig. 1B, right panel). A two-way
ANOVA revealed significant effects of Time, Group and Time x
Group interaction for both ghrelin (Time, F3, 22= 34.84, P < 0.0001;
Group, F3,66= 71.96, P < 0.0001, Interaction, F9, 66= 16.39, P <
0.0001) and DAG (Time, F3, 22= 7.33, P < 0.01; Group, F3,66= 18.65,
P < 0.0001, Interaction, F9, 66= 5.89, P < 0.0001).
Acquisition of cocaine self-administration significantly elevated

VTA GHS-R1a mRNA levels revealed by RNAscope in-situ
hybridization analysis (Fig. 2). The elevation of GHS-R1a mRNA
was mainly restricted to DA cells (Fig. 2A, B). Quantification
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analysis indicated that both the average numbers of GHS-R1a
mRNA puncta (Fig. 2G) and GHS-1a signal area (Fig. 2H) in DA cells
were significantly increased as compared to saline-experienced
rats (Puncta/DA cell, t= 6.11, P < 0.0001; Area/DA cell, t= 9.99, P <
0.0001). No significant changes were observed in VTA GABA
(Fig. 2C, D, G, H) and glutamate cells (Fig. 2E, F, G, H).

GHS-R1a blockade by JMV2959 inhibits cocaine-taking,
cocaine-seeking, and reinstatement of cocaine-seeking
triggered by cocaine
Pretreatment with JMV2959 (0.3-6 mg/kg, i.p.) dose-dependently
decreased cocaine self-administration as compared to either the
last training session or the vehicle-pretreated group (Fig. 3A). A

two-way ANOVA with session as a repeated measure revealed a
significant effect of Group (F2, 42= 4.82, P < 0.01) and a significant
Group × Session interaction (F3,42= 3.54, P < 0.05). A post hoc
analysis indicated a significant reduction in cocaine-taking
following pretreatment with either 3 or 6 mg/kg of JMV2959 as
compared to the vehicle-pretreated group. Active lever-presses
changed in a similar manner as cocaine infusions following
pretreatment (data not shown). Pretreatment with JMV2959
produced no significant effects on inactive lever-presses (Fig. 3B).
When saline was substituted for cocaine, JMV2959 pretreatment

(0.3-6 mg/kg, i.p.) significantly inhibited cocaine-seeking as
demonstrated by selective decreases in animals’ responding on
the active lever (Fig. 3C). A one-way ANOVA revealed a significant
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treatment effect on active lever-presses (F1,42= 35.60, P < 0.0001)
but not on inactive lever-presses (Fig. 4D; P= 0.49). Post hoc
analysis revealed significant reduction in active lever-presses in
groups pretreated with either 3 or 6 mg/kg of JMV2959 as
compared to saline controls.
A priming injection of either cocaine (10 mg/kg, i.p.) or

yohimbine (1.5 mg/kg, i.p.) robustly reinstated active lever-
presses in the vehicle-pretreated group. These reinstatements
were dose-dependently attenuated by JMV2959 pretreatment
(Fig. 3E, G). A one-way ANOVA revealed a significant Group effect
for both cocaine-induced reinstatement (F3,38= 4.38, P < 0.02) and

yohimbine-induced reinstatement (F2,18= 5.86, P < 0.02) groups.
Either JMV2959 or yohimbine pretreatment showed no effects on
animals’ inactive lever-presses (Fig. 3F, H).

GHS-R1a blockade by JMV2959 inhibits BSR maintained by
optogenetic stimulation of VTA DA neurons
Pretreatment with JMV2959 (6, 12 mg/kg, i.p.) significantly
inhibited optogenetic self-stimulation of VTA DA neurons in
DAT-Cre mice as demonstrated by a dose-dependent rightward-
shift of the stimulation frequency-response curve following
JMV2959 pretreatment (Fig. 4C). A two-way ANOVA revealed
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significant main effects of Treatment (F2, 12= 10.82, P < 0.01), and
Stimulation Frequency (F5,30= 41.76, P < 0.0001) and a significant
interaction of Treatment x Stimulation Frequency on active lever-
presses (F10,60= 9.30, P < 0.0001). Post-hoc analysis revealed a
significant decrease in responses on the active lever at 25–100 Hz
following pretreatment with either dose of JMV2959. Cocaine (4
mg/kg, i.p.) enhanced lever-presses for BSR by shifting the
stimulation frequency-response curve leftward (F5,35= 9.30, P <
0.0001). Pretreatment with JMV2959 dose-dependently blocked
the leftward shift of the stimulation frequency-response curve
induced by cocaine (Fig. 4D). A two-way ANOVA with Treatment
and Stimulation Frequency as repeated measures revealed
significant main effects of Treatment (F3,18= 5.05, P < 0.02) and

Frequency (F5,30= 107.3, P < 0.0001) and Treatment x Stimulation
Frequency interaction (F15,90= 1.78, P < 0.05).

Atenolol dose-dependently inhibits cocaine-induced increase
in ghrelin levels and inhibits cocaine self-administration and
reinstatement of cocaine-seeking
Plasma ghrelin and DAG levels were significantly elevated one
hour following a systemic injection of cocaine (10 mg/kg, i.p.) in
the vehicle-pretreated group. Atenolol pretreatment (15 mg/kg,
i.p.) significantly attenuated these elevations induced by cocaine
(Fig. 5A, B). ANOVA revealed a significant main effect of Time for
ghrelin (F2, 15= 6.21, P < 0.02). ANOVA also revealed significant
main effects of Group and Time x Group interactions for both
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ghrelin (Group, F3, 45= 4.49, P < 0.01, Interaction, F6, 45= 11.22,
P < 0.001) and DAG (Group, F3, 45= 3.78, P < 0.02, Interaction,
F6, 45= 10.74, P < 0.001).
Pretreatment of rats with atenolol (5-15 mg/kg, i.p.) dose-

dependently inhibited responding on the active lever (data not
shown) and cocaine infusions during a self-administration test
session (Fig. 5C). A two-way ANOVA revealed significant effects of
Time (F 1,14= 4.62, P < 0.05), Group (F2,28= 5.36, P < 0.02) and
Time x Group interaction (F 2,28= 4.45, P < 0.05).
Pretreatment with atenolol (5–15mg/kg, i.p.) dose-dependently

inhibited the reinstatement of active lever-presses triggered by
cocaine (Fig. 5E). ANOVA revealed a significant effect of Group on
active lever-presses (F2,19= 8.90, P < 0.01). Pretreatment with
atenolol showed no effects on inactive lever-presses tested under
either condition (Fig. 5D, F).

DISCUSSION
Elevation of endogenous ghrelin signaling by cocaine represents a
potential mechanism by which cocaine and cocaine-associated
stimuli reinforce drug-taking and motivate drug-seeking in
cocaine-experienced rats. Specifically, cocaine self-administration

and cocaine-seeking behavior each robustly elevates circulating
ghrelin levels. Atenolol’s potent inhibition of cocaine-induced
ghrelin elevation suggests an involvement of a peripheral
adrenergic action in cocaine-related effects. Further, acquisition
of cocaine self-administration is associated with an upregulation of
GHS-R1a mRNA levels in the VTA, a brain region crucial for cocaine
reward. The GHS-R1a mRNA upregulation is primarily restricted to
DA neurons, which indicates that cocaine-induced ghrelin signal-
ing enhancement could occur in the mesolimbic reward system via
either alterations in ghrelin secretion, receptor signaling, or both.
Behaviorally, GHS-R1a blockade dose-dependently inhibits cocaine
self-administration and cocaine-seeking, as well as relapse to
cocaine-seeking triggered by cocaine. GHS-R1a blockade also
potently inhibits BSR maintained by optogenetic stimulation of
VTA DA neurons and inhibits the potentiating effects of cocaine on
BSR. Further, we show that atenolol, at a dose that inhibits the
effects of cocaine on ghrelin, also potently inhibits cocaine self-
administration and cocaine-trigged relapse to cocaine-seeking.
These findings suggest the endogenous ghrelin system as a critical
substrate by which cocaine’s activation of the peripheral adrener-
gic system is centrally conveyed and cocaine-motivated behaviors
are modulated.
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Unlike for ghrelin and DAG, the plasma levels of the
endogenous ghrelin antagonist LEAP2 were not affected by either
cocaine self-administration or cocaine-seeking. In contrast to
ghrelin, LEAP2 levels decrease in response to fasting and increase
following refeeding, and LEAP2 given in vivo inhibits ghrelin-
induced food intake [22, 47]. Circulating LEAP2 and ghrelin
inversely correlate with body mass, indicating that they act
synergistically in response to energy demand [23, 48, 49]. Thus,
the LEAP2-ghrelin circulation ratio has been proposed as a means
of assessing ghrelin function [23]. If true, the enhanced ghrelin
signaling observed in the present study may well have derived
mainly from elevated ghrelin. The lack of LEAP2 response suggests
that the secretion of these two hormones can also be
disassociated under certain circumstances, such as cocaine
exposure.
The present data reveal both unconditioned and conditioned

elevations of ghrelin levels in rats regularly self-administering
cocaine. This is shown by the ghrelin elevations in cocaine-trained
rats receiving an unexpected extinction test and in rats receiving
yoked cocaine and cocaine methiodide infusions. While the
elevations of ghrelin caused by yoked cocaine in the saline-trained

rats may reflect a simple stimulatory effect of cocaine, the
significantly higher response of ghrelin in the cocaine-yoked,
cocaine-trained rats and the elevations of ghrelin during the
extinction session suggest that acquisition of cocaine self-
administration is associated with acquisition of the stimulatory
properties on ghrelin by cocaine conditioned stimuli. Compared to
cocaine, yoked cocaine methiodide caused significantly lower
ghrelin responses in the cocaine-trained rats and showed no
effects in the saline-trained rats. Congruent with a conditioned
role for cocaine in ghrelin secretion, circulating ghrelin levels in
rats has been shown to positively correlate with cue-triggered
cocaine-seeking [50]. Together, while these findings indicate a
conditioned effect of cocaine, they suggest that the uncondi-
tioned effect of cocaine on ghrelin requires cocaine acting
centrally.
The stimulatory effects of cocaine on ghrelin appear to be

mediated by adrenergic action at β1 receptors, as pretreatment
with atenolol potently attenuated cocaine-induced increases in
ghrelin and DAG levels. Circulating ghrelin is derived predomi-
nantly from endocrine cells in the stomach, where ghrelin
secretion is under major control by adrenergic sympathetic inputs
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[39, 51, 52] mediated by β1 adrenergic receptors [40]. Local
administration of noradrenaline or adrenaline to this region
increases extracellular ghrelin levels as assessed by microdialysis,
and noradrenaline also potently stimulates ghrelin secretion from
ghrelin cells in vitro [53, 54] Cocaine is a nonselective monoamine
uptake inhibitor that increases noradrenergic transmission
through blockade of presynaptic noradrenaline reuptake. Cocaine
is also a stressor that elevates circulating noradrenaline and
adrenaline levels [55]. The inhibitory effects of atenolol seen in the
present study suggest that cocaine may increase ghrelin secretion
through activation of both synaptic and non-synaptic adrenergic
signaling in ghrelin cells. Intriguingly, β1 adrenergic receptor
antagonism has also been shown to attenuate both pre-prandial
and stress-induced enhancement of ghrelin, indicating that
sympathetic activation is likely a common process by which
cocaine, nutrients and stress control ghrelin release. This
conclusion is consistent with our previous behavioral studies in
which cocaine at the same molar dose reinstated cocaine-seeking
more potently than cocaine methiodide [45].
The present findings do not exclude other mechanisms by

which cocaine can regulate ghrelin levels. In contrast to ghrelin,
cocaine self-administration progressively inhibits the levels of
several anorexic hormones including insulin and leptin [14].
Whether elevated ghrelin involves disinhibition caused by
decreased insulin remains to be explored. Additionally, both
cocaine and ghrelin are powerful activators of the hypothalamic-
pituitary axis (HPA; [56–58]), including in individuals showing
addictive behaviors [59–61], and HPA appears to serve as an
inhibitory feedback system, as both central corticotropin releasing
factor agonist and systemic glucocorticoid administrations sig-
nificantly inhibit ghrelin secretion, while adrenalectomy-induced
elimination of corticoids potentiates fasting-induced ghrelin
elevation, an effect that can be normalized by glucocorticoid
replacement [62–64].
The inhibitory effects of JMV2959 on cocaine self-administration

and cocaine-seeking indicate a potential role for the ghrelin
system in the maintenance of behaviors driven by cocaine and by
conditioned reinforcers known to prolong drug-motivated beha-
viors [65]. Such maintenance is likely achieved, at least in part, by
the action of the ghrelin system on the mesolimbic DA reward
system. Unlike food and other natural rewards that stimulate DA
release directly [66], cocaine activates DA transmission by
inhibiting DA reuptake, a process that also inhibits DA impulse
flow [67]. Importantly, maintenance of DA neuronal impulse flow
is critical in cocaine reward. Given the important roles of ghrelin in
stimulating VTA DA cell firing [68] and DA release in terminal
regions [12], ghrelin elevation by cocaine or cocaine-associated
stimuli may counteract the inhibitory effects of cocaine on DA
impulse flow, and contribute to cocaine-elevated DA transmission
and consequently to cocaine-motivated behaviors. Supporting
this notion are findings that ghrelin given either systemically or
locally into the VTA potentiates DA release and behaviors induced
by cocaine [69–71]. However, this role of ghrelin would need
sufficient peripheral ghrelin reaching brain regions involved in
mediating reward. Peripheral ghrelin has been recently shown to
cross both blood-cerebrospinal fluid (CSF) and blood-brain
barriers, although at low levels [72, 73]. Blockade of GHS-R1a in
VTA significantly inhibits drug-seeking in food-restricted but not
normally fed rats [74]. These findings suggest that elevated ghrelin
levels, as also seen in the present study, may have a centrally
functional significance. This interpretation, however, doesn’t rule
out an involvement of peripheral ghrelin or ghrelin in other brain
regions in cocaine-motivated behaviors seen in the present study
as peripheral ghrelin directly acts on hypothalamic neuropeptide
Y (NPY) neurons that project to both nucleus accumbens (NAS)
and VTA [75–77], and activation of these neurons significantly
increases DA signaling in the NAS [77]. Central NPY administration
increases the motivational effects of both drug and natural reward

[78–80]. Further, in addition to VTA and hypothalamus, GHS-R1a is
also densely located in the amygdala, dorsal raphé [81–83], and
hippocampus where ghrelin elevates anxiety-like behaviors in rats
[84–86] and increases the response of the amygdala to alcohol
cues in heavy-drinking, alcohol-dependent individuals following
i.v. ghrelin [29]. Therefore, the observed behavioral effects in the
present study may result from both central and peripheral action
of ghrelin and involve brain regions that mediate both positive
and negative aspects of drug reinforcement [4, 6]. Additionally,
GHS-R1a are found in VTA DA, GABA, and glutamate neurons and
are likely upregulated in DA neurons following acquisition of the
cocaine-taking habit as indicated by the significant increase in
GHS-R1a mRNA levels in DA neurons in the present study. GSH-
R1a is known to heterodimerize with both DA D1 and D2
receptors to potentiate DA action at these receptors [87–89].
Future studies are necessary to verify whether GHS-R1a hetero-
dimerization is involved in the behavioral effects of JMV2959
found in the present study. GHS-R1a blockade by JMV2959 in the
present study dose-dependently inhibited BSR and blocked the
potentiating effects of cocaine on such behavior in DTA-Cre mice.
We have found, in a parallel study, that JMV2959 at the similar
dose range shows no effects on BSR maintained by VTA
stimulation of NAS GABA neurons to this region in vGAT-Cre mice
[90]. This finding while ruling out a potential motoric side effect of
JMV2959, suggests that GHS-R1a signaling at the targeted
neurons may be mainly responsible for the attenuation of reward
stimulating behaviors seen in DAT-Cre mice, as GHS-R1a are not
reliably detected in most forebrain regions including the NAS [91].
The findings that atenolol significantly inhibits cocaine self-

administration and cocaine-induced elevations in ghrelin suggest
that ghrelin may be a potential substrate by which the peripheral
adrenergic system modulates cocaine-driven behaviors. The
inhibitory effects of atenolol on cocaine self-administration are
consistent with previous findings tested under similar experi-
mental conditions [92]. Atenolol, as a β1 blocker mainly active in
the periphery [93], potently attenuates cocaine-induced tachycar-
dia [94], a sympathetic activation-mediated somatic sign normally
seen in cocaine dependency during exposure to cocaine cues
[95, 96], and cocaine withdrawal-induced anxiety [97]. However,
the circuits that connect such action of atenolol with relevant
central sites remain unclear. Interestingly, ghrelin given directly to
the hippocampus, amygdala, or dorsal raphe nucleus elevates
anxiety-like behaviors in rats and stress-induced elevation of
circulating ghrelin is sufficient and necessary for stress-associated
vulnerability to exacerbated fear learning [84–86]. Here, we show
that yoked cocaine methiodide elevates circulating ghrelin only in
cocaine-trained rats. Further, we have previously shown that
systemic cocaine methiodide injection is sufficient to elevate
glutamate and DA release in the VTA and to reinstate cocaine-
seeking in cocaine-trained rats following behavioral extinction
[45]. Ghrelin signaling in catecholaminergic neurons is involved in
stress-induced food-reward [98].
The present study suggests that elevation of circulating ghrelin

constitutes a process by which cocaine triggers drug-seeking. We
show that targeting ghrelin signaling, directly via GHS-R1a
blockade (by JMV2959) or indirectly via peripheral β1 receptor
blockade (by atenolol) dose-dependently inhibits cocaine-
triggered reinstatement of drug-seeking behavior in cocaine-
trained rats after subsequent extinction of cocaine-taking
behavior. Atenolol significantly inhibits the ghrelin elevation
induced by cocaine. Further, we show that blockade of GHS-R1a
effectively attenuates the reinstatement of cocaine-seeking
triggered by yohimbine. Of note, yohimbine is a potent stressor
and activator of the adrenergic system, including in animal models
of addiction and in humans living with addictions [99–101].
Therefore, whether endogenous ghrelin represents one of the
signaling systems that carry peripheral adrenergic signals to brain
reward and stress regions is an interesting subject for future
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research. This suggests that apart from its primary direct action on
DA, cocaine may also trigger drug-seeking through activation of
an autonomic adrenergic system. Stress and adrenergic activation
are each recognized as critical triggers in escalating prolonged
access drug-taking [6, 102] and in relapse [103, 104]. Such effects
are believed to result from the direct central actions of drugs and
stressors [105]. However, given the positive correlation of
noradrenergic activation with stress- and cue-induced craving
[96, 106] and the significant roles of both ghrelin and adrenergic
action reported here, ghrelin and the peripheral adrenergic
system are likely to be mediators by which cocaine and stress
act to control drug-motivated behaviors. Future studies are
necessary to test whether atenolol modulates self-administration
maintained by other addictive drugs and the reinstatement of
drug-seeking behaviors caused by other stressors and drug-
associated environmental cues.
The present study reveals a reciprocal stimulatory interaction

between endogenous ghrelin signaling and behaviors caused by
cocaine and cocaine-predictive cues with an involvement of
peripheral β1 adrenergic action in such interaction. The stimulatory
responses of ghrelin and DAG to cocaine self-administration seen
in this study are similar to the previously reported responses of
total ghrelin to 3,4-methylenedioxymethamphetamine or metham-
phetamine, two other psychostimulants, measured at varying time
points following an acute systemic challenge in rats [107, 108].
Notably, although we also observed a significant elevation of
ghrelin and DAG following i.p. injection of cocaine in cocaine-
trained rats, we previously did not find such response in ghrelin in
human subjects measured 2 hr following an i.v. cocaine challenge
[109]. Whether this discrepancy is associated with difference in
cocaine dose or route of administration, in the time exposure to
cocaine (chronic vs. acute), or reflects a species-specific response
remains to be determined. Furthermore, it is important to note
that, in the present study, the reciprocal stimulatory interaction
between endogenous ghrelin signaling and behaviors produced
by cocaine and cocaine-predictive cues are demonstrated only in
male rats. Given that sex differences may play a role in addictive
behaviors and estrogens play a critical role in such propensity
[110–113], future studies are necessary to assess whether such
behavioral effects are generalizable to females and/or whether
sexual differences exit. The behavioral findings in the present study
are in concert with a role for ghrelin in cocaine reward and
motivation reported from studies using other behavioral models
such as CPP and locomotor sensitization [34, 38, 114, 115] and
consistent with a general view that drug use behaviors are under
the control of some of the same biological substrates as are
involved in natural reward processing [5, 116, 117]. Therefore,
manipulating and targeting this system may be viable for
developing new treatments for cocaine use disorder.
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