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The opioid crisis is a major public health challenge in the United States, killing about
70,000 people in 2020 alone. Long delays and feedbacks between policy actions and
their effects on drug-use behavior create dynamic complexity, complicating policy
decision-making. In 2017, the National Academies of Sciences, Engineering, and Medi-
cine called for a quantitative systems model to help understand and address this com-
plexity and guide policy decisions. Here, we present SOURCE (Simulation of Opioid
Use, Response, Consequences, and Effects), a dynamic simulation model developed in
response to that charge. SOURCE tracks the US population aged ≥12 y through the
stages of prescription and illicit opioid (e.g., heroin, illicit fentanyl) misuse and use dis-
order, addiction treatment, remission, and overdose death. Using data spanning from
1999 to 2020, we highlight how risks of drug use initiation and overdose have evolved
in response to essential endogenous feedback mechanisms, including: 1) social influence
on drug use initiation and escalation among people who use opioids; 2) risk perception
and response based on overdose mortality, influencing potential new initiates; and
3) capacity limits on treatment engagement; as well as other drivers, such as 4) supply-
side changes in prescription opioid and heroin availability; and 5) the competing influ-
ences of illicit fentanyl and overdose death prevention efforts. Our estimates yield a
more nuanced understanding of the historical trajectory of the crisis, providing a basis
for projecting future scenarios and informing policy planning.
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The opioid crisis is a major public health problem in the United States, with half a mil-
lion opioid overdose deaths in the last 20 y (1). Deaths have risen rapidly since 2014,
with nearly 70,000 in 2020 alone (1), driven in part by the continuing spread of illicit
fentanyl and other deadly synthetic opioids (2, 3). Millions of people now suffer from
opioid use disorder, with severe health, social, and economic consequences.
There are many potential policy levers government actors can use to address the opi-

oid crisis, such as regulating approvals of prescription opioid analgesics or treatments
for addiction and overdose, scheduling controlled substances, using law enforcement,
and shaping medical and insurance practices around pain and addiction treatment.
However, the net effects of these policy levers on the crisis and public health more
broadly are often unclear. The opioid crisis acts as a complex adaptive system, with
dynamic and nonlinear interactions between prescription opioid misuse, heroin/fenta-
nyl use, overdose mortality, and more (4). As a result, policy decisions based on past
patterns of behavior may lead to unintended consequences as those patterns evolve over
time (5, 6). In addition, data on the crisis are limited and lagged, with large uncertain-
ties even in basic quantities and parameters, such as the numbers of people using
heroin/fentanyl and the hazard rate of developing opioid use disorder (7).
Better policy planning requires grappling with these complexities and uncertainties,

as well as attaining a deeper understanding of the underlying dynamics of the crisis.
The National Academies of Sciences, Engineering, and Medicine in 2017 therefore rec-
ommended that the US Food and Drug Administration (FDA) develop an integrated
decision-making framework for policy decisions, based on a system-level quantitative
model of the opioid crisis (4).
Here, we present SOURCE (Simulation of Opioid Use, Response, Consequences,

and Effects), a data-driven simulation model developed in response to these recommen-
dations. SOURCE is the first product of a multitiered systems modeling initiative (8,
9). SOURCE improves on existing models of the opioid crisis in several ways.
First, SOURCE highlights the role of feedback mechanisms, such as social influence

and risk perceptions (10, 11), in shaping the evolution of the opioid crisis. It combines
these feedbacks with policy-relevant operational details on the impacts of synthetic
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opioids, overdose prevention measures, and addiction treat-
ment, to elucidate how and why patterns of risk have changed
over time.
These risks (e.g., hazard rates of initiation or overdose) are

not static, but change endogenously as the crisis evolves. Most
existing national-level models of the opioid crisis (12–15) do
not account for these changing hazards, or do so only exoge-
nously, impeding their ability to make realistic projections of
future trends. The one published model that incorporates key
feedbacks driving the crisis (16) lacks SOURCE’s level of oper-
ational and input detail. A few models examine policy-relevant
aspects of the crisis in more detail, like treatment (17) or fatal
overdose prevention (18), but do not integrate these details
into the complexities of the broader opioid crisis. By incorpo-
rating these feedbacks and details, SOURCE’s estimates shed
new light not only on the historical trajectory of the crisis, but
also trends and developments still unfolding, to better inform
policy decisions and anticipate unintended consequences.
Finally, SOURCE is explicitly intended for use within a

broader decision support process to inform FDA policy deci-
sions. It thus provides a concrete example of how simulation
models can introduce an integrative, systemic perspective to
complement more traditional sources of evidence. In addition,
SOURCE’s systemic scope enables exploration of a range of
potential policies, individually and in combination, that fall
outside of any one agency’s purview. As such, SOURCE could
potentially be useful for identifying synergies—or unintended
interference—and therefore could help better coordinate
interagency efforts to address the opioid crisis.

Model Specification. SOURCE is a dynamic, continuous-time
differential equation model that tracks the US noninstitutional-
ized opioid-using population aged 12+ y through several use
states or compartments. These include: misuse of prescription
opioids; use of heroin, possibly including illicitly manufactured
fentanyl (IMF); opioid use disorder (OUD) associated with pre-
scription opioids or heroin; treatment with medications for
OUD (MOUD); and remission from OUD (see SI Appendix,
section S1 for definitions and SI Appendix, section S2 for full
model structure). People transition between states at time-varying
rates, including initiation of prescription opioid or heroin misuse,
development of OUD, engagement in treatment, remitting from
or returning to OUD, and opioid overdose death.
SOURCE explicitly represents several dynamic factors that

influence these transition rates (Fig. 1 and SI Appendix, section
S2). Two key endogenous processes in the model are social

influence, whereby existing users of a substance can increase
initiation rates or accelerate use disorder development, and risk
perception, whereby overdoses, especially overdose deaths,
increase the perceived risk associated with prescription opioid
or heroin use and discourage initiation (10, 11). The model
also endogenously represents the dynamics of demand for and
availability of prescription opioids for misuse, which influence
initiation and use disorder development. We also represent sev-
eral other influences exogenously, including supply-side changes
(e.g., opioid prescribing practices, heroin prices, and IMF prev-
alence in heroin supply), naloxone availability, and MOUD
capacity.

SOURCE tracks several public health outcomes, such as over-
dose mortality and OUD prevalence. It also allows for calculation
and tracking of a range of other outcomes (SI Appendix, section
S5), to better anticipate potential indirect effects of policies on
the broader public health. While SOURCE contains substantial
operational detail, important complexities—such as polysubstance
use, mental health comorbidities, and undertreated pain—go
beyond its present scope, as discussed in detail in Limitations and
Areas for Expansion. It is critical to consider these limitations
when using the model to inform potential policies.

Results and Discussion

SOURCE closely replicates the historical trajectory of the opi-
oid crisis from 1999 to 2020 (Fig. 2 and SI Appendix, section
S5). Across all 15 time series used in model estimation, average
R2 for simulated values against data are 0.756, while mean
absolute errors normalized by mean (MAEN) are 12.7%. For
total overdose deaths, R2 = 0.969 and MAEN = 8.3%. The
model’s ability to simultaneously replicate several different his-
torical trajectories as a result of its endogenous structure gives
confidence that this structure is a robust representation of the
real system (19) (see also Model Validation, below).

Shifting Risks Over Time. SOURCE replicates the fluctuations
over time of several key transitions between states (e.g., drug
use initiation, overdose death) (Fig. 3). These fluctuations
result from changes in the sizes of populations at risk for each
transition as the overall scale of the crisis has grown, and
changes in the per person-year hazard rates of transitions (i.e.,
transition probabilities/risks). Crucially, these risks or hazard
rates are not static. But most existing models either represent
them as constant over time, or vary them exogenously, without
constraint, to fit historical data (12–14). SOURCE’s feedback
and operational structure constrains how hazard rates evolve

Fig. 1. Overview of key transitions and feedback effects in the model. See SI Appendix, section S2 for full structure.
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over time in relation to the state of the crisis, yielding an inter-
nally consistent understanding of shifting risk patterns.
For example, prescription opioid misuse initiation from

medical use has declined over time (Fig. 3 A, Top). SOURCE
attributes this decline primarily to a rapid fall in the per
person-year hazard of initiation in the 2000s (Fig. 3 A, Middle),
driven by a combination of growing perceived risk associated
with opioid analgesic use and declining popularity (i.e., social
influence). As a result, misuse initiation from medical use fell
even as prescribing rates and the patient population receiving
opioids (Fig. 3 A, Bottom) continued to increase until around
2011. After 2011, falling prescribing rates played a role in the
continued decline of misuse initiation as well.

In contrast, SOURCE estimates that hazard rates of
heroin initiation from prior prescription opioid use (Fig. 3 B
and C) rose through 2013, driven primarily by processes
of social influence, before eventually falling as growing
overdose deaths increased the perceived risk of heroin use. As
a result, heroin initiation continued to rise, even after the
prevalence of prescription opioid misuse (Fig. 3B) and prescrip-
tion OUD* (Fig. 3C) peaked and fell earlier, around 2009
to 2011.

Fig. 2. Comparison of simulated model output (blue) to historical data (gray, 95% CIs where available) for selected time-series variables. Note that “heroin”
implicitly includes IMF (SI Appendix, section S2). Rx overdose deaths exclude heroin and IMF. Note the different y axis scales in the Left and Right panels. CIs
for 2020 are disproportionately wide due to smaller NSDUH sample sizes during the COVID-19 pandemic. Historical data sources: NSDUH (initiation, use
disorder prevalence), NVSS (overdose deaths). Full results are in SI Appendix, section S5.

*Specifically, Diagnostic and Statistical Manual of Mental Disorders 5 substance use disorder
associated with use of prescription opioid analgesics but not heroin (SI Appendix, section
S3).
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Competing Influences of Naloxone and Fentanyl. Risks and
drivers of overdose mortality have evolved over time as well.
Comparing fentanyl prevalence, naloxone distribution, and
overdose mortality data, SOURCE estimates that overdose
death hazard has remained relatively stable over time for people
with prescription OUD who do not also use heroin/IMF (Fig.
3D), although this could change as fentanyl-contaminated
counterfeit pills spread (20, 21). Among people who use her-
oin/IMF, however, overdose death hazard has shifted noticeably
(Fig. 3E), due to two growing and competing influences start-
ing around 2013 to 2015: increasing IMF presence in the
heroin supply (2, 22), followed by numerous efforts to increase
access to the lifesaving overdose reversal drug naloxone (23).
On balance, overdose death hazard has increased substantially

since 2014, as naloxone distribution to laypersons is not keeping
pace with the growing mortality risk from IMF. Among people
with heroin use disorder, who are both more exposed to illicit
synthetics and more likely to receive naloxone (24), SOURCE
estimates the overdose death hazard in 2020 would be 18.0%
(90% credible interval [CrI]: 11.8 to 23.1%) higher absent nalox-
one distribution efforts. In the absence of IMF, however, it would
be 84.5% (90%CrI: 83.7 to 85.5%) lower.
Across all people who use opioids, we estimate 19,800

(90%CrI: 19,000 to 20,900) deaths averted due to layperson
naloxone over the entire period from 1999 to 2020 (Fig. 4),
mostly in the last few years when naloxone distribution has
increased rapidly. This estimate of layperson naloxone’s impact
on overdose death hazard is broadly consistent with other existing
estimates (25, 26).
We also estimate that in a counterfactual situation where

IMF were completely absent, there would have been 59,000

(90%CrI: 55,000 to 65,000) fewer overdose deaths from 1999
to 2020 (Fig. 4). This estimate of the net impact of IMF on
mortality is lower than the raw total of ∼228,000 synthetic
opioid-involved overdose deaths reported in the National Vital
Statistics System (NVSS) from 1999 to 2020 (27). There are

A B C D E

Fig. 3. (A–E) Changes in key transitions (flows) over time (Top, blue), distinguishing effects of changes in transition hazard rates (Middle, red), and source
populations (Bottom, green). Bands are 95% CrIs. Source populations and hazard rates are normalized to their initial values. HUD, heroin use disorder; Rx,
prescription opioid; Rx OUD, prescription opioid use disorder.

Fig. 4. Comparison of impact of naloxone distribution and IMF on opioid
overdose mortality, showing total deaths averted due to layperson nalox-
one (green shading), and excess deaths due to IMF (red shading). Dashed
lines are observed data. Simulated deaths absent IMF (red, solid) are higher
than reported deaths not involving synthetic opioids (red, dashed): in
earlier years, due to prescription fentanyl, and in later years, due to
attenuated risk response in the counterfactual absence of IMF.
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two reasons for this difference. First, the raw total includes
deaths from prescription as well as illicit fentanyl; second, the
raw data overestimate the true net mortality effect of IMF.
SOURCE suggests that in reality, the fentanyl surge caused a
rapid increase in the perceived risk associated with heroin use,
which led to less heroin use by 2020 than there would have
been otherwise. Absent the surge in mortality from IMF, an
attenuated risk response would have meant higher ongoing ini-
tiation of heroin use in recent years, with attendant higher mor-
tality. SOURCE’s estimate of net IMF impact reflects this
attenuation.

Policy Analysis Process and Baseline Projections. Based on its
historical estimates, SOURCE can project potential future trajec-
tories of the opioid crisis for use in policy analysis. Any such pro-
jections require some baseline assumptions about future trends in
exogenous model inputs. SOURCE is designed to allow flexible
testing of alternative baseline assumptions. For example, here we
present three scenarios: an “exogenous trends continue” (ETC)
scenario, where SOURCE’s exogenous inputs are assumed to
continue their present trends at decelerating rates, stabilizing at
plausible levels by 2032, as well as two variants of this scenario
with more “optimistic” and “pessimistic” outcomes (Table 1).
The optimistic case assumes lower IMF prevalence, higher nalox-
one and MOUD availability, and greater reductions in opioid
prescribing than the ETC case, while the pessimistic case is the
reverse. These scenarios should not be considered precise forecasts
nor analyses of any particular policy interventions, but instead
plausible future trajectories for the evolving crisis.
In all three scenarios, we project continued declines in the

initiation and prevalence of heroin/IMF use and use disorder
(Fig. 5). These declines are driven primarily by the continued
influences of risk response feedbacks (SI Appendix, section S6),
which are already apparent in falling initiation rates, as outlined
above.
Overdose deaths involving heroin/IMF continue to rise for a

few years (slightly under ETC assumptions, or sharply under
pessimistic assumptions), due primarily to the continued spread
of IMF in the heroin supply. In all three scenarios, the trend
eventually reverses and deaths start to decline as the prevalence

of heroin/IMF use falls. Projections from other models, formal
or implicit, which do not account for the dynamic changes in
initiation may miss the impending peak and decline, instead
projecting continued growth in opioid overdose mortality (e.g.,
refs. 12–14). Total projected deaths for 2020 to 2032 remain
high across scenarios, however, ranging from 543,000 to
842,000 in the optimistic vs. pessimistic scenarios.

In addition, while ETC and optimistic scenarios show contin-
ued declines in prescription opioid misuse, OUD, and overdose,
the pessimistic scenario shows a potential rebound by 2032. The
rebound arises primarily from assumptions in the pessimistic sce-
nario that the trend of reduced prescribing over the last decade
weakens substantially, highlighting the importance of continued
prudence in prescribing and patient management for maintaining
the falling trends in prescription opioid misuse and associated
outcomes.

These projections require several caveats. First, as with any
model’s forecasts, the validity of SOURCE’s projections is vul-
nerable to unforeseeable exogenous shocks, which could disrupt
short- or long-term patterns of opioid use in unexpected ways.

Second, projected trends in overdose mortality are sensitive
to input assumptions about further IMF penetration in the
illicit drug supply. IMF’s presence in the supply of both illicit
opioids and other drugs is expected to increase, but there is
great uncertainty around just how much, how quickly, and
where (28). Greater IMF penetration could result in a substan-
tially larger and longer-lasting rise in overdose mortality before
it peaks (SI Appendix, section S6), though the overall pattern of
an eventual peak and decline persists regardless of IMF penetra-
tion assumptions.

Third, SOURCE does not account for the possibility of
increasing contamination of stimulant supplies (e.g., cocaine,
methamphetamine) with IMF (29) and consequent impacts on
synthetic opioid-involved overdoses (30, 31). Growing IMF
contamination of stimulants could expose large additional
groups of people who use stimulants (but not opioids) to the
threat of fentanyl, driving continued growth in opioid overdose
mortality and potentially neutralizing or even reversing the pro-
jected declines. Given fentanyl’s outsize role in determining the
future of the crisis, understanding the dynamics underlying the

Table 1. Exogenous input time series showing 2020 data values and assumptions for ETC, optimistic, and
pessimistic cases

Exogenous input* Source 2020 value

2032 Assumed value†

ETC Optimistic Pessimistic

Fentanyl penetration NFLIS 56.2% 80.7% 69.8% 99.5%
Naloxone kits distributed IQVIA, various* 2.30 million 3.60 million 4.22 million 2.94 million
Heroin price index (1999 = 1) UNODC, STRIDE 0.49 0.49 0.58 0.40
Buprenorphine-waivered treatment providers Various* 94,200 178,300 224,900 134,500
Methadone maintenance treatment capacity‡ N-SSATS 360,000 646,000 765,000 528,000
Vivitrol treatment capacity‡ IQVIA 32,900 45,800 52,700 39,900
Patients receiving opioid analgesic prescription IQVIA 41.3 million 28.4 million 22.3 million 35.1 million
Prescriptions per person IQVIA 3.49 3.31 3.01 3.50
Average days per prescription IQVIA 24.4 26.8 24.0 28.0
Average opioid MME per day IQVIA 31.3 23.6 20.2 28.0
ADF fraction of prescribed opioids (percent of MME) IQVIA 4.9% 3.1% 3.1% 3.1%

MME, morphine milligram equivalent; NFLIS, National Forensic Laboratory Information System; N-SSATS, National Survey of Substance Abuse Treatment Services; STRIDE, System to
Retrieve Information on Drug Evidence; UNODC, United Nations Office on Drugs and Crime.
*See SI Appendix, section S3 for details on input data derivations.
†Broadly, the optimistic scenario assumes stronger trends (1.5× ETC) in naloxone distribution, MOUD treatment capacity, and downward-trending aspects of prescribing, and weaker
trends (0.5× ETC) in fentanyl penetration and upward-trending aspects of prescribing; vice-versa for the pessimistic scenario.
‡MMT/Vivitrol capacity are calculated based on treatment utilization data from listed sources (SI Appendix, section S3).
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spread of IMF and identifying measures to curb it (or at least
better monitor its presence, especially as regards the supply of
nonopioid illicit drugs) should be policy priorities.
SOURCE is currently undergoing beta-testing at the FDA,

using its projections to help inform the analysis of potential
policy impacts and identify key uncertainties. The model can
also provide a focal point for problem-structuring discussions
with subject-matter experts and policymakers. Additional work
is also under way to use SOURCE to analyze the outcomes of
various intervention strategies. In addition, we have made
SOURCE publicly available for use or adaptation by other
stakeholders, such as nonprofits, researchers, and other federal,
state, or local agencies.

Limitations and Areas for Expansion. SOURCE has several
limitations. First, SOURCE does not address the growing and
intertwined challenges of co-occurring stimulant use (32, 33),
counterfeit pharmaceuticals (20, 21), and their interaction with
IMF, which could drive a significant fraction of drug overdose
mortality in coming years (30). It also does not address in detail
the interaction of mental health comorbidities and other social
determinants of health with substance use, nor does it account
for untreated or undertreated pain. These topics are all major
targets for potential further research.

Second, SOURCE is a national-level model that aggregates
potentially important geographic and demographic heterogene-
ities, as well as specifics of prescribing practices. In part, this

Fig. 5. Simulated historical and projected trajectories for selected variables, under three sets of assumptions: ETC (blue), optimistic (orange), and pessimis-
tic (green). Bands are 95% CrIs for estimated underlying values (historical portion, before 2020) and for projected reported data (after 2020); CrIs for
projected reported values account for measurement noise, and hence are wider. Full results are in SI Appendix, section S5.
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aggregation is due to data limitations; given more detailed data,
the model could be parametrized for specific geographies (e.g.,
states) or demographics. Aggregation also provides computational
tractability, allowing more extensive analysis and testing at the
cost of some precision (34). Nonetheless, care must be taken to
consider potentially important but hidden heterogeneities (3, 35),
particularly in the geography of fentanyl exposure (28). Addi-
tional work is presently under way to incorporate demographic
attributes into the model and quantify disparities in outcomes.
Third, the model necessarily relies on imperfect data (7).

Much data around drug use is incomplete or suffers sampling
bias. True longitudinal national-level data are not available.
National-level data sources also do not report data on the grow-
ing problem of fentanyl (e.g., use, use disorder, overdose, treat-
ment), preventing us from representing its effects other than on
overdose and mortality. We have attempted to address some of
these limitations (SI Appendix, section S3), including correcting
for established underreporting of heroin use (36), and sensitivity
testing can clarify the implications of uncertainties. Nevertheless,
these shortcomings limit any model’s quantitative precision.
Fourth, SOURCE currently lacks a unified outcome mea-

sure, such as quality-adjusted life years or monetary cost, that
would allow more direct comparison of tradeoffs. Adding meas-
ures to enable use of SOURCE for cost-effectiveness analysis is
the subject of ongoing FDA-funded work, which will facilitate
future use of SOURCE for additional policy analysis.

Materials and Methods

This section summarizes model estimation, data sources, and testing; full details
and documentation are in SI Appendix, and all relevant files are publicly avail-
able at https://github.com/FDA/SOURCE.

Data Sources. SOURCE includes 95 parameters, such as baseline hazard rates
of state transitions (e.g., overdose, drug use initiation, relapse) and feedback
effect sensitivities (see SI Appendix, section S5 for full list). Of these, 15 are
derived from literature sources, 22 calculated from data, and 5 from expert
input. Where possible, we synthesized multiple existing studies to derive
parameter values, to address heterogeneity or nonrepresentativeness of study
populations (SI Appendix, section S3). Tests of model sensitivity to parametric
assumptions are presented in SI Appendix, section S6.

We formally estimated the remaining 53 parameters using a panel of
national-level data from 1999 to 2020, drawn from both publicly available and
proprietary nationally representative datasets, primarily the National Survey on
Drug Use and Health (NSDUH), NVSS, and IQVIA (SI Appendix, Table S8). The
panel includes annual initiation and prevalence of prescription opioid and her-
oin misuse and use disorder, patients receiving MOUD, and overdose mortality,
as well as prescribing, treatment capacity, naloxone distribution, heroin prices,
and fentanyl prevalence.

Model Estimation. The model uses 11 time series from the data panel as
exogenous inputs, which correspond closely to real-world phenomena whose
drivers are outside the model’s scope (Table 1).

We used the remainder of the data panel for formal model estimation,
detailed in SI Appendix, section S4. Estimation is by maximum likelihood (37),
using a Gaussian likelihood function to identify the set of parameter values that
maximizes the likelihood of observing historical data given historical inputs and
those parameter values.

We quantified uncertainties in parameter estimates using a Markov chain
Monte Carlo method intended for exploring high-dimensional parameter spaces
(38). From the credible region of parameter space thus quantified, we generated
a subsample of 5,000 plausible alternative model specifications for use in
sensitivity analysis, and as the basis for credible intervals on model projections.

Model Validation. SOURCE’s role in policy decision support demands high
confidence in its structure, quantification, and projections. To establish confi-
dence, we developed SOURCE’s structure through an iterative process of expert
consultation, detailed in SI Appendix, section S3. In addition, SOURCE has been
subject to multiple reviews by third-party consultants contracted by the FDA
(2019 to 2020) to evaluate the model. Reviewers assessed the model against
sound modeling principles and best practices, checking model behavior and
reviewing parametric and structural assumptions.

We also validated our estimation framework using a synthetic data analysis
and an out-of-sample prediction test. For the synthetic data analysis, we gener-
ated 20 artificial datasets statistically similar to historical data and attempted to
recover “true” parameter values using our estimation procedure. The absolute
error between estimated and true parameter values was considerably smaller
than the estimated uncertainty, and estimated credible intervals were close to
their theoretically expected accuracies (SI Appendix, section S4). For the out-of-
sample test, we estimated the model using data only up to 2012, and used
those estimates to predict observed values in the holdout dataset from 2012 to
2020. Of holdout data points, 72% fell within the predicted 95% CrIs, and the
model successfully projected trend changes in several variables (SI Appendix,
section S4). Full results of these analyses, along with additional sensitivity analy-
ses and robustness tests, are presented in SI Appendix, section S6.

Finally, we recognize that both the opioid crisis itself, and our knowledge of
it, continue to evolve; we will continue to update and revise SOURCE and its
scope as more data emerge.

Data Availability. All data, code, and materials are available in SI Appendix
and the online repository (version associated with this article archived at https://
zenodo.org/record/6544836 and most up-to-date version maintained at https://
github.com/FDA/SOURCE). All other study data are included in the main text
and SI Appendix.
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