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Abstract

IMPORTANCE Overdose is one of the leading causes of death in the US; however, surveillance data
lag considerably from medical examiner determination of the death to reporting in national
surveillance reports.

OBJECTIVE To automate the classification of deaths related to substances in medical examiner data
using natural language processing (NLP) and machine learning (ML).

DESIGN, SETTING, AND PARTICIPANTS Diagnostic study comparing different natural language
processing and machine learning algorithms to identify substances related to overdose in 10 health
jurisdictions in the US from January 1, 2020, to December 31, 2020. Unstructured text from 35 433
medical examiner and coroners’ death records was examined.

EXPOSURES Text from each case was manually classified to a substance that was related to the
death. Three feature representation methods were used and compared: text frequency–inverse
document frequency (TF-IDF), global vectors for word representations (GloVe), and concept unique
identifier (CUI) embeddings. Several ML algorithms were trained and best models were selected
based on F-scores. The best models were tested on a hold-out test set and results were reported with
95% CIs.

MAIN OUTCOMES AND MEASURES Text data from death certificates were classified as any opioid,
fentanyl, alcohol, cocaine, methamphetamine, heroin, prescription opioid, and an aggregate of other
substances. Diagnostic metrics and 95% CIs were calculated for each combination of feature
extraction method and machine learning classifier.

RESULTS Of 35 433 death records analyzed (decedent median age, 58 years [IQR, 41-72 years];
24 449 [69%] were male), the most common substances related to deaths included any opioid
(5739 [16%]), fentanyl (4758 [13%]), alcohol (2866 [8%]), cocaine (2247 [6%]), methamphetamine
(1876 [5%]), heroin (1613 [5%]), prescription opioids (1197 [3%]), and any benzodiazepine (1076
[3%]). The CUI embeddings had similar or better diagnostic metrics compared with word
embeddings and TF-IDF for all substances except alcohol. ML classifiers had perfect or near perfect
performance in classifying deaths related to any opioids, heroin, fentanyl, prescription opioids,
methamphetamine, cocaine, and alcohol. Classification of benzodiazepines was suboptimal using all
3 feature extraction methods.

CONCLUSIONS AND RELEVANCE In this diagnostic study, NLP/ML algorithms demonstrated
excellent diagnostic performance at classifying substances related to overdoses. These algorithms
should be integrated into workflows to decrease the lag time in reporting overdose surveillance data.
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Key Points
Question What is the most accurate

machine learning and natural language

processing model to identify substances

related to overdose deaths in medical

examiner data?

Findings In this diagnostic study of

35 433 death records, machine learning

models were able to classify with perfect

or near perfect performance deaths

related to any opioids, heroin, fentanyl,

prescription opioids,

methamphetamine, cocaine, and

alcohol. Classification of

benzodiazepines was suboptimal.

Meaning In this study, a natural

language processing workflow was able

to automate identification of substances

related to overdose deaths in medical

examiner data.
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Introduction

Overdose deaths continue to increase in the US.1,2 The introduction of fentanyl in many drug markets
was a substantial factor in overdose deaths since 2013. More recently, there was a shift from opioids
to stimulants, with concurrent increases in methamphetamine and cocaine–related deaths. There
was also an increase in overdoses related to polysubstance use, including benzodiazepines and novel
compounds.3,4 The Centers for Disease Control and Prevention collects data from medical examiners
and coroners through local health jurisdictions, summarizing overdose counts at the state and
national levels on a 12-month rolling basis.1,2 However, these data ultimately lack local specificity, and
the reporting lag makes it difficult to provide rapid responses to epidemics developing in local
jurisdictions.3,5

Medical examiners and coroners are responsible for the first step in collection of overdose
surveillance data.6 They determine the cause of death in cases in which an overdose is suspected and
complete a corresponding death certificate. These certificates include unstructured textual data that
denotes the cause of death, and in the case of an overdose, the drug involved. They are then
transmitted to local jurisdictions for coding according to the International Statistical Classification of
Diseases and Related Health Problems, Tenth Revision (ICD-10). This coding process is done manually
and is time consuming, resulting in a delay from the date of death to the correct code and additional
delay from coding to the actual reporting of these deaths. This process slows the reporting of
surveillance data and ensuing public health response time.

Text analysis of medical examiner entries may reveal more granular drug involvement as details
may be obscured in the ICD-10 cause of death codes used to generate national statistics.7 For
example, both buprenorphine (a partial opioid agonist used to treat opioid use disorder) and fentanyl
(a synthetic opioid that is largely illicitly manufactured) are encompassed in the same ICD-10 code,
as are tramadol, fentanyl analogs, and novel synthetic opioids such as isotonitazene. Disaggregating
these data may reveal important implications for prevention ahead of national data and facilitate
rapid identification of emerging drug phenomena.8

Natural language processing (NLP) and machine learning (ML) has the potential to automate
these manual review processes. NLP is the use of computer algorithms to understand text and can be
used to identify key concepts or features in text. Tied with ML, large amounts of data can be used to
train models to automate tasks with high precision and accuracy.9 For example, Ward et al6 used
NLP/ML to classify free-text death certificate data in Kentucky. However, this classification was
limited to 1 state and identified only the presence of overdose and did not attempt to classify the
contributing substance. In other applications of NLP to topics related to substance use, researchers
have applied techniques to identify opioids related harms10,11 or overdose12,13 in electronic health
record data.

The aim of this research was to use an automated approach to rapidly and accurately identify
substances that led to death in coroners’ reports to provide more rapid surveillance data about
overdoses. We assembled a database of more than 35 000 death certificates from multiple settings
across the US and manually classified each of their free-text entries according to the substance
involved. We compared multiple NLP and ML approaches to determine the combination of
algorithms with the best diagnostic performance for identifying various substances reported within
the text.

Methods

Data
This study entailed a cross-sectional analysis of death certificate data from multiple coroners. We
obtained death certificate data from either publicly available sources or by directly requesting the
data from a coroner or medical examiner. Data from January 1, 2020, to December 31, 2020, were
obtained from the following counties: Cook in Illinois; Denton in Texas; Jefferson in Alabama;
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Johnson in Texas; Los Angeles in California; Milwaukee in Wisconsin; Parker in Texas; San Diego in
California; and Tarrant in Texas. We also obtained data from the state of Connecticut. Analyses were
completed in January 2022. All records provided were included in the analysis. We compiled the
information into a database with the following variables: case number, county, age, gender, race, date
of death, manner of death, primary cause, and secondary cause of death. The University of California
at Los Angeles Institutional Review Board determined that this study was exempt from review and
informed patient consent as nonhuman participant research. This study is reported following the
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) reporting guideline.

Reference Standard
Two of us (C.L.S. and J.A.M.) manually classified deaths based on whether a substance was present
in each case based on the accompanying text from the coroner. We compiled a dictionary of
keywords to identify each substance (eTable 1 in the Supplement). A particular case could have been
classified to multiple substances. We classified the text into the following categories:
methamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine,
amphetamine, cocaine, alcohol, benzodiazepines, heroin, fentanyl, prescription opioids, any opioids,
antipsychotics, antidepressant, anticonvulsants, antihistamine, muscle relaxants, barbiturates, and
hallucinogens. We randomly selected 1000 records to double code and Cohen κ was calculated to
rate interannotator agreement. After that step, a prespecified κ cutoff of greater than 0.80 was
achieved for each group; one author (J.A.M.) coded the rest of the cases with supervision by another
(C.L.S.). Only substances with at least 1000 entries were individually evaluated, and the rest were
grouped as others.

Natural Language Processing
Our NLP pipeline was composed of multiple stages: exploratory data analysis, data preprocessing,
feature engineering, ML training and testing, and error analysis (Figure 1). During exploratory data
analysis, we calculated descriptive statistics to assess the distribution of the text data and manually

Figure 1. Natural Language Processing Pipeline

Acquisition of raw text data from 
medical examiners and coroners

Exploratory data analysis

Text preprocessing

Split data into training (80%)/testing 
(20%) data sets

Classifiers: logistic regression, naive 
Bayes, random forest, XGBoost, 
K-nearest neighbors (KNN), support
 vector machines (SVM), simple neural 
network, hyperparameter tuning

Feature engineering

GloVe embeddings

Metrics evaluation and selection 
of best models in training data

Model testing/error analysis 
Bootstrapping to calculate 95% CIs

TF-IDF CUI parsing/CUI embeddings (CUI2vec)

CUI indicates concept unique identifier; GloVE, global
vectors for word representations; KNN, κ-nearest
neighbors; SVM, support vector machine; XGBoost,
eXtreme Gradient Boosting.
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evaluated text entries to inform the necessary preprocessing steps. Preprocessing simplified the text
before more complex modeling steps by removing entries that did not contain a description of the
death (missing data), combining the primary and secondary cause of death variables, and completing
basic textual formatting (removing punctuation, changing text to lower case, splitting each sentence
into individual words [tokens]).

In this study, feature engineering entailed creating numeric representations from the source
textual data. We compared 3 methods for feature engineering: text frequency–inverse document
frequency (TF-IDF), word embeddings, and embeddings of concept unique identifiers (CUIs). The
TF-IDF is a frequency based numeric representation of each word calculated as the product of the TF
(number of times a word appears in each observation) and IDF. The IDF is calculated as the log of the
number of documents divided by the number of documents that contain the word in question. In
contrast, word embeddings are numeric representations of words in multidimensional spaces that
are obtained from pretrained models. In our word embeddings models, we used global vectors for
word representations (GloVe), a model pretrained on text from Wikipedia and the Gigaword 5 corpus
(newswire text data).14 We used a version of GloVe that is composed of 6 billion tokens and 100
dimensions.15,16 In addition, CUIs are unique codes assigned to each concept in a particular
terminology, in this case medical. We used the scispacy framework17 to link text in the data set to
their particular CUI in the National Library of Medicine Unified Medical Language System.18 Then, we
matched each CUI to their respective embedding. Similar to word embeddings, vector embeddings
are numeric representations of CUIs in multidimensional spaces obtained from pretrained models.
We used CUI2vec, a model pretrained on text from a collection of 20 million clinical notes and 1.7
million biomedical journal articles.19 The CUI2vec provided embeddings for 109 053 unique CUIs and
500 dimensions for each CUI. The CUI2vec embeddings were filtered to include only those with a
semantic class of organic chemical.

Machine Learning Classifiers
Next, we evaluated multiple ML classification models that included logistic regression, naïve Bayes
algorithm, random forest, XGBoost, κ-nearest neighbors, support vector machines, and a single-layer
neural network. Separate binary classifiers were trained and tested for each substance evaluated.
For each substance, we split the data 80% for training and 20% for testing and final evaluation (ie,
hold-out test set) stratified by said substance. We trained all classifiers on the training split using
10-fold cross-validation. We tuned hyperparameters for models such as random forest, XGBoost,
κ-nearest neighbors, support vector machines, and neural networks based on a grid search method.
In this strategy, we trained a model with an initial set of hyperparameters, and then reran the same
model with values around the initial values, and subsequently around the value of the previous step.
We used the model and combination of hyperparameters with the best F-score (harmonic mean of
positive predictive value and sensitivity) for testing.

Statistical Analysis
We calculated final diagnostic metrics for each substance and model on the held-out-test set (20%
of data). Final diagnostic metrics included F-score, accuracy, κ, sensitivity (recall), specificity, positive
predictive value (PPV; precision), negative predictive value, and area under the receiver operating
curve. We calculated 95% CIs by bootstrapping by resampling the testing set with replacement 1000
times and calculating diagnostic metrics for each resample. We reported the 2.5th percentile as the
lower end of the CI and 97.5th percentile as the upper end of the CI and the 50th percentile as the
mean. We created confusion matrixes to identify the number of false positives, true positives, false
negatives, and true negatives. Two of us (A.T. and D.G.M.) manually evaluated the false negative and
false positive cases to identify the reasons for incorrect classification. To attempt to identify
keywords that models used for their predictions, we plotted feature importance plots based on
TF-IDF and logistic regression. All analyses were performed in R version 4.0.2 (R Foundation for
Statistical Computing) using the tidymodels framework on an Amazon Web Server.
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Results

Descriptive
The initial data set included 35 698 cases. We excluded 265 cases because of missing textual data,
resulting in a final data set of 35 433 cases. The decedent median age was 58 years (IQR, 41-72 years)
and 24 449 (69%) were male. The jurisdictions that provided the most cases were Cook County
(45%), Los Angeles County (32%), and San Diego County (8%). The median number of characters
per text for each case was 59 (range, 3 to 331). The median number of words per text was 7 (range, 1
to 38). The number of substances or groups of substances classified were 0 in 26 695 cases (75%);
1 in 2635 cases (7%); 2 in 1401 cases (4%); 3 in 2218 cases (6%); 4 in 1364 cases (4%); 5 in 659 cases
(2%); 6 in 301 cases (1%); 7 in 113 cases (<1%); 8 in 41 cases (<1%); and 9 in 6 cases (<1%). The
substances or groups of substances identified to be related to a death are shown in Figure 2 and
include any opioid (5739 [16%]), fentanyl (4758 [13%]), alcohol (2866 [8%]), cocaine (2247 [6%]),
methamphetamine (1876 [5%]), heroin (1613 [5%]), prescription opioids (1197 [3%]), and any
benzodiazepine (1076 [3%]). Substances with a count below a cutoff of 1000 (eg,
3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine, amphetamine,
antipsychotics, antidepressant, anticonvulsants, antihistamine, muscle relaxants, barbiturates, and
hallucinogens) were grouped as others. eTable 2 in the Supplement presents a matrix of
co-occurrence of substances involved in deaths.

Diagnostic Metrics
Table 1 presents the F-score results from the 10-fold cross-validation performed on the hold-out test
set. Models using both TF-IDF, word embeddings, and CUI embeddings performed almost perfectly
in identifying any opioids, heroin, fentanyl, methamphetamines, and cocaine. Notably, classification
of prescription opioids was suboptimal using TF-IDF (F-score, 0.571) and word embeddings (F-score,

Figure 2. Substances Identified in Overdoses From Medical Examiner Data
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0.554); whereas CUI embeddings performed nearly perfectly for prescription opioids (F-score,
0.996). Benzodiazepines performance was suboptimal across all 3 feature representations (F-scores:
CUI embeddings, 0.902; TF-IDF, 0.795; word embeddings, 0.662). For alcohol, TF-IDF had and
F-score of 0.972 and word embeddings had an F-score of 0.956, whereas CUI embeddings had a
lower F-score of 0.852.

eTable 3 in the Supplement displays the bootstrapped diagnostic metrics for the best models
using TF-IDF. Final models had high F-scores for any opioids (F-score, 0.969; 95% CI, 0.959-0.979),
heroin (F-score, 1.00; 95% CI, 1.00-1.00), fentanyl (F-score, 0.999; 95% CI, 0.998-1.00),
methamphetamine (F-score, 0.992; 95% CI, 0.979-0.997), cocaine (F-score, 0.999; 95% CI,
0.997-1.00), and alcohol (F-score, 0.968; 95% CI, 0.953-0.980). The TF-IDF models were
suboptimal at identifying prescription opioids (F-score, 0.308; 95% CI, 0.211-0.468),
benzodiazepines (F-score, 0.771; 95% CI, 0.716-0.826), and others (F-score, 0.777; 95% CI, 0.743-
0.808).

eTable 4 in the Supplement displays the bootstrapped diagnostic metrics from the hold-out test
set for the best selected models using word embeddings. These models performed with a high
F-score for classifying a death as related to any opioid (F-score, 0.966; 95% CI, 0.956-0.976), heroin
(F-score, 1.00; 95% CI, 1.00-1.00), fentanyl (F-score, 0.999; 95% CI, 0.998-1.00),

Table 1. Top 3 Models by Substance in 10-Fold Cross-Validation of Training Data Set

Substance

TF-IDF Word embeddings (GloVe)a CUI2Vec embeddingsb

Model

Mean

Model

Mean

Model

Mean

F-score SE F-score SE F-score SE
Any opioid XGBoostc 0.969 0.002 SVMc 0.970 0.002 SVMc 0.992 0.001

Random forestc 0.969 0.001 Neural network 0.967 0.003 XGBoost 0.989 0.001

Neural network 0.968 0.002 XGBoost 0.965 0.003 Random forest 0.987 0.001

Heroin Logistic regressionc 1.000 0.000 Logistic regressionc 1.000 0.000 Logistic regressionc 1.000 0.000

Random forestc 1.000 0.000 SVMc 1.000 0.000 SVMc 1.000 0.000

XGBoostc 1.000 0.000 Neural network 0.999 0.000 XGBoost 0.996 0.002

Fentanyl Random forestc 1.000 0.000 SVMc 1.000 0.000 SVMc 1.000 0.000

XGBoostc 1.000 0.000 Neural networkc 1.000 0.000 Neural networkc 1.000 0.000

Logistic regression 0.999 0.000 Logistic regressionc 1.000 0.000 XGBoost 0.999 0.000

Prescription opioid XGBoostc 0.561 0.015 XGBoostc 0.554 0.015 SVMc 0.996 0.002

Random forest 0.558 0.015 Random forest 0.514 0.016 Neural network 0.989 0.002

Logistic regression 0.545 0.015 SVM 0.510 0.012 Logistic regression 0.985 0.002

Methamphetamine Logistic regressionc 1.000 0.000 SVMc 0.999 0.000 SVMc 0.998 0.001

Random forestc 1.000 0.000 Neural network 0.997 0.002 Logistic regression 0.987 0.005

XGBoostc 1.000 0.000 Logistic regression 0.997 0.001 XGBoost 0.986 0.001

Cocaine Logistic regressionc 1.000 0.000 Logistic regressionc 1.000 0.000 Logistic regressionc 1.000 0.000

Random forestc 1.000 0.000 SVMc 1.000 0.000 SVMc 1.000 0.000

XGBoostc 1.000 0.000 SVM 0.999 0.000 Neural network 0.998 0.001

Benzodiazepine Random forestc 0.671 0.013 Neural networkc 0.662 0.011 Neural networkc 0.902 0.009

XGBoost 0.666 0.015 SVM 0.645 0.016 SVMc 0.902 0.009

Neural network 0.657 0.013 XGBoost 0.637 0.014 XGBoost 0.867 0.01

Alcohol Random forestc 0.974 0.003 SVMc 0.956 0.002 XGBoostc 0.852 0.005

XGBoost 0.974 0.003 Neural network 0.951 0.003 Random forestc 0.852 0.005

Neural network 0.973 0.003 XGBoost 0.948 0.002 SVM 0.851 0.005

Other XGBoost 0.812 0.005 Neural networkc 0.806 0.005 SVMc 0.968 0.003

Random forest 0.811 0.004 XGBoost 0.804 0.003 Logistic regression 0.953 0.006

Neural network 0.807 0.004 Random forest 0.772 0.004 XGBoost 0.941 0.004

Abbreviations: CUI, concept unique identifier; GloVe, global vectors for word
representations; SVM, support vector machine; TF-IDF, term frequency–inverse
document frequency.
a GloVe with 6 billion tokens and 100 dimensions was used in this analysis.

b CUI2vec with 109 053 tokens and 500 dimensions was used in this analysis.
c The best performing models based on the mean F-score of 10-fold cross-validation.
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methamphetamine (F-score, 0.998; 95% CI, 0.993-1.00), cocaine (F-score, 0.999; 95% CI,
0.997-1.00), and alcohol (F-score, 0.942; 95% CI, 0.924-0.960). Suboptimal classification occurred
for prescription opioids (F-score, 0.378; 95% CI, 0.205-0.537), benzodiazepines (F-score, 0.771;
95% CI, 0.716-0.826), and others (F-score, 0.750; 95% CI, 0.715-0.785).

Last, Table 2 displays the bootstrapped diagnostic metrics from the hold-out test set for the
best selected models using CUI embeddings. Models had excellent performance at classifying deaths
related to any opioid (F-score, 0.989; 95% CI, 0.982-0.994), heroin (F-score, 1.00; 95% CI,
1.00-1.00), fentanyl (F-score, 0.999; 95% CI, 0.998-1.00), prescription opioids (F-score, 0.977; 95%
CI, 0.941-1.00), methamphetamine (F-score, 0.995; 95% CI, 0.989-1.00), cocaine (F-score, 1.00;
95% CI, 1.00-1.00), and others (F-score, 0.942; 95% CI, 0.924-0.960). Again, suboptimal
classification occurred for benzodiazepines (F-score, 0.840; 95% CI, 0.788-0.889), and alcohol
(F-score, 0.854; 95% CI, 0.828-0.880).

Error Analysis and Interpretability
We present confusion matrices for the true positive, false positive, true negative and false negative
values for each substance derived from the analysis in the held-out test set (eTables 5-13 in the
Supplement). We also completed a subsequent error analysis (eTables 14-19 in the Supplement), in
which we manually identified mistakes made by the models. eFigures 1-9 in the Supplement show
feature importance plots for each substance or group of substances.

Discussion

In this diagnostic study, we present results for the use of NLP for feature extraction and ML to classify
specific substances related to overdose deaths. We found that for most substances evaluated, the
performance of these algorithms was perfect or near perfect. These models could be used to
automate classification of unstructured free-text, thus avoiding the manual and time-consuming
process of individually reading each entry and classifying them to a specific substance. However,
more work is needed for rapid identification of certain substances, such as benzodiazepines, because
the models studied did not have a high diagnostic performance. However, they were able to reliably
exclude (ie, high negative predictive value) cases that did not contain the substance in question. This
ability could help exclude a vast number of cases, concentrating manual review on cases classified
as positive. Ultimately, adoption of NLP/ML tools such as the ones developed and tested in this study

Table 2. Bootstrapped Diagnostic Metrics and Best Performing Models in Test Data Set (N = 7087) Using CUI2Vec as Feature Representationsa

Metric

Mean (95% CI)b

Any opioid Heroin Fentanyl
Prescription
opioid MethamphetamineCocaine Benzodiazepine Alcohol Other

F-score 0.989
(0.982-0.994)

1.00
(1.00-1.00)

0.999
(0.997-1.00)

0.977
(0.941-1.00)

0.995
(0.989-1.00)

1.00
(1.00-1.00)

0.840
(0.788-0.889)

0.854
(0.828-0.880)

0.950
(0.933-0.965)

Accuracy 0.996
(0.994-0.998)

1.00
(1.00-1.00)

1.00
(0.999-1.00)

0.998
(0.996-1.00)

0.999
(0.999-1.00)

1.00
(1.00-1.00)

0.988
(0.967-0.993)

0.979
(0.975-0.983)

0.992
(0.990-0.995)

κ 0.986
(0.979-0.993)

1.00
(1.00-1.00)

0.999
(0.997-1.00)

0.977
(0.939-1.00)

0.995
(0.988-1.00)

1.00
(1.00-1.00)

0.722
(0-0.885)

0.843
(0.815-0.871)

0.945
(0.928-0.962)

Sensitivity (recall) 0.98
(0.970-0.989)

1.00
(1.00-1.00)

0.999
(0.997-1.00)

0.971
(0.931-1.00)

0.993
(0.98-1.00)

1.00
(1.00-1.00)

0.658
(0-0.829)

0.749
(0.709-0.787)

0.912
(0.885-0.938)

Specificity 1
(0.998-1.00)

1.00
(1.00-1.00)

1.00
(1.00-1.00)

0.999
(0.998-1.00)

1.00
(1.00-1.00)

1.00
(1.00-1.00)

0.999
(0.996-1.00)

1.00
(0.997-1.00)

0.999
(0.998-1.00)

Positive predictive
value (precision)

0.998
(0.988-1.00)

1.00
(1.00-1.00)

1.00
(0.997-1.00)

0.984
(0.931-1.00)

0.997
(0.992-1.00)

1.00
(1.00-1.00)

0.940
(0.873-0.986)

0.994
(0.955-1.00)

0.99
(0.973-1.00)

Negative predictive
value

0.996
(0.994-0.998)

1.00
(1.00-1.00)

1.00
(1.00-1.00)

0.999
(0.998-1.00)

1.00
(0.999-1.00)

1.00
(1.00-1.00)

0.989
(0.967-0.995)

0.978
(0.974-0.982)

0.992
(0.99-0.995)

AUROC 0.994
(0.988-0.999)

1.00
(1.00-1.00)

1.00
(0.997-1.00)

0.987
(0.965-1.00)

0.997
(0.986-1.00)

1.00
(1.00-1.00)

0.940
(0.895-0.978)

0.901
(0.883-0.918)

0.981
(0.956-0.995)

Abbreviation: AUROC, area under the receiver operating curve.
a CUI2vec with 109 053 tokens and 500 dimensions was used in this analysis.

b Values are means of 1000 resamples bootstrapping procedure, values in parenthesis
are lower and upper bounds of 95% percentiles for the bootstrapping procedure.
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could provide rapid results for policy makers, clinicians, and harm reduction agencies to respond
appropriately in their respective areas.

We build on the successful implementation of NLP from previous work by colleagues in the
field.6 Whereas prior detection has been concentrated on identification of overdose alone, we
extended NLP to identify the substance associated with overdose cases. Additional strengths of the
present study include the large number of cases available for training and testing, the multitude and
specificity of substances that we classified. We have also provided our data and code as an open-
source repository for future researchers to build on for further improvement. Further validation will
be needed to verify the external validity of these models to data from jurisdictions outside of this
initial evaluation.

Excellent performance was shown for multiple substances, including any opioid, heroin,
fentanyl, methamphetamine, cocaine, and alcohol using models for general text (word embeddings
or TF-IDF). Yet for prescription opioids and benzodiazepines, there was a considerable performance
gap. The substances that performed well in the models may have done so because of a relatively
small number of words commonly used in their identification (eg, heroin, fentanyl,
methamphetamine, and cocaine). They may also have performed well because of the large number
of data entries available for training (eg, any opioid and fentanyl). Of the substances we included in
the model, prescription opioids and benzodiazepines had the smallest number of data entries. In
addition, owing to the large number of keywords for both groups, models may have had difficulty
identifying uncommon terms in the training data. We expect that with more data, model
performance would improve. Other factors complicating model predictions of prescription opioids
and benzodiazepines may include difficulty identifying nuances between prescription opioids (eg,
oxycodone and hydrocodone) and illicit opioids (eg, heroin and fentanyl), or the coexistence of
multiple other substances (deaths due to polysubstance use). Furthermore, more common
substances (eg, alcohol, cocaine, and heroin) may be part of the general lexicon and thus identifiable
by general embeddings such as GloVe. However, novel or less commonly used substances (including
the diversity of prescription opioids and benzodiazepines) are unlikely to appear in the general text
that these models were trained on.

When we tested a feature extraction method specific to medical terminology (CUI
embeddings), performance improved across most substances, most notably prescription opioids and
benzodiazepines. However, some identification errors occurred owing to the lack of a specific CUI
for certain substances. For instance, alprazolam coded to C0002333, but flualprazolam did not map
to a specific entry in scispacy and was therefore unable to be identified in the model. This lack may
lead to problems when encountering novel substances without specific concept identifiers that are
involved in overdoses. An example of this in our analysis was carfentanyl, a novel fentanyl analog was
not captured either.20 Over time, an iterative process of error analysis and retraining will be
necessary to ensure ongoing accuracy.

Future directions include the use of more sophisticated models such as Deep Bidirectional
Transformers for Language Understanding,21 more specific medical22 or clinical23 models for NLP, or
deep learning methods such as convolutional neural networks. For more straightforward
identification of substances, the simpler models we opted for here yielded excellent classification
results. However, for the substances in which performance was suboptimal, these approaches should
be further explored.

Limitations
This study has limitations. A main limitation of this work includes the inability to train models for less
common substances in our data set, ranging from generalized groups of medications (eg,
anticonvulsants) to individual drugs (eg, 3,4-methylenedioxymethamphetamine). As the models rely
on a large volume of training cases to learn and make predictions, they would likely not be reliable in
the automatic identification of emerging trends. However, other clustering or unsupervised models
could be used to identify emerging trends and should be explored in future tasks. Over time, the
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failure of these models may also be an indicator of how we think about data set shift in this space and
emergent causes that are not within the common knowledge space. In addition, it is unknown how
these models may generalize to other areas of the country as the models were trained heavily from
data from 3 urban centers.

Conclusions

Rapid and accurate data are necessary to adequately implement policies and develop interventions
to address the increasing overdose crisis in the US. In this analysis, we found that NLP and ML are
tools that may provide excellent results for rapid classification of unstructured text data produced by
medical examiners and coroners. The NLP tools such as these should be integrated in data
surveillance workflows to increase rapid dissemination of data to the public, researchers, and
policy makers.
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