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Abstract
Background  The opioid epidemic has prompted nationwide efforts to expand access to medications for opioid use 
disorder (MOUD). Primary care settings have been identified as a critical access point for patients who may benefit 
from MOUD treatments. Despite implementation efforts, there is limited understanding of how MOUD practice 
capability in primary care settings evolves over time or what factors influence clinic-level implementation trajectories.

Methods  We conducted a longitudinal study of 95 primary care clinics in California from 2019 to 2024. MOUD 
practice capability was measured using the Integrating Medications for Addiction Treatment in Primary Care (IMAT-PC) 
index across three timepoints. Using latent class growth analysis, we analyzed implementation growth trajectories 
and examined their associations with clinic characteristics and MOUD implementation outcomes (e.g., patient reach 
and provider adoption).

Results  Three distinct implementation trajectory classes emerged: elevated improving (41.0%), moderate improving 
(47.4%), and low improving (11.6%). All clinics demonstrated improvements in MOUD practice capability over time. 
Elevated improving clinics primarily consisted of smaller clinics (< 15,000 patients) and achieved significantly higher 
number of patients receiving MOUD compared to moderate (p = 0.03) and low improving clinics (p = 0.04). Clinics 
serving medically underserved populations disproportionately represented the low improving class (p < 0.01). 
Increase in the number of providers prescribing MOUD did not differ significantly across trajectory classes.

Conclusions  Although all clinics increased MOUD capability, we found significant associations between 
implementation trajectory classes and changes in patients receiving MOUD over time in primary care-based MOUD 
programs. Implementation supports may be more effective and efficient if selected and delivered based upon clinic 
contextual factors, particularly in resource-constrained and underserved settings.
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Introduction
The United States opioid epidemic has prompted a mas-
sive national effort to enhance treatment options for 
people with opioid use disorder (OUD) [1–5]. Federal 
agencies, state governments, and healthcare systems have 
launched large-scale initiatives to combat this epidemic 
[6–8]. A central focus of these efforts is expanding access 
to the three FDA-approved medications for opioid use 
disorder (MOUD): buprenorphine, methadone, and nal-
trexone (MOUD) [6, 9]. Despite evidence that MOUD 
improve patient outcomes and drastically reduce mor-
tality, fewer than 20% of eligible patients receive these 
medications [10, 11]. Consequently, addressing this sub-
stantial treatment gap remains a national priority.

Expanding MOUD delivery in primary care settings 
has emerged as a critical strategy for increasing access 
to addiction treatment and reducing the negative effects 
of OUD. Primary care clinics offer efficient, widespread 
and integrated infrastructure, and can achieve MOUD 
retention rates that are comparable to specialty addic-
tion clinics [12]. Patients with OUD are also more likely 
to present to primary care settings due to lower levels of 
addiction-related stigma, and the benefit of pre-estab-
lished patient-provider relationships [13–16]. Buprenor-
phine prescriptions in primary care more than doubled 
from 2010 to 2018, which was driven in large part by 
changes in healthcare regulations and increased prescrib-
ing from nurse practitioners and physician assistants [17, 
18]. Federally Qualified Health Centers (FQHCs) provide 
accessible healthcare services to low-income communi-
ties, and patients receiving MOUDs in community health 
settings increased from about 39,000 in 2016 to 181,900 
in 2020 [19]. However, significant challenges remain such 
as provider-based stigma, limited training in addiction or 
addiction medicine, and workforce shortages [20–22].

Despite the massive investment in expanding MOUD 
access in primary care settings, little is known about how 
MOUD practice capability develops over time or what 
distinct trajectory patterns emerge at the clinic level. Cur-
rent research has focused primarily on clinical outcomes 
(e.g., treatment retention or reduced substance use) 
rather than standard clinic-level implementation out-
comes, such as patient reach or provider adoption. Iden-
tifying distinct growth trajectories of implementation 
outcomes are important because they can reveal critical 
insights into how clinics adopt and sustain new MOUD 
programs [23]. This gap in research on clinic-level trajec-
tories limits our ability to both identify implementation 
challenges and develop tailored implementation support 
or practice change strategies that achieve sustained suc-
cess of MOUD integration in primary care.

The present study examines how clinic-specific fac-
tors (e.g., clinic size, patient demographics) and growth 
trajectories in MOUD practice capability are associated 

with provider adoption (number of MOUD prescribers) 
and patient reach (number of patients receiving MOUD) 
in safety-net community health center primary care clin-
ics. Specifically, our objectives are to: (1) identify distinct 
trajectory classes of implementation capability using 
latent class growth analysis (LCGA) (2), examine how 
trajectory classes differ by clinic characteristics such as 
urbanicity, size, and medically underserved designation, 
and (3) evaluate how these trajectory classes are associ-
ated with two implementation outcomes: patient reach 
and provider adoption. To our knowledge, this is the first 
study to examine implementation trajectories and their 
association with MOUD implementation outcomes in 
primary care settings.

Methods
Study design and timeline
We conducted a longitudinal implementation study of 95 
primary care clinics participating in the Addiction Treat-
ment Starts Here (ATSH) program [24]. The ATSH pro-
gram was funded by the California Department of Health 
Care Services to expand access to medication treatment 
for people with OUD in California community health 
centers. Data collection occurred across four cohorts 
between February 2019 and June 2024: Wave 1 (February 
2019-September 2020), Wave 2 (August 2019-Septem-
ber 2020), Wave 3 (March 2021-August 2022), and Wave 
4 (February 2023-June 2024). Cohorts were defined by 
enrollment year and in general received equivalent offer-
ings from cohort to cohort. This MOUD practice change 
program utilized multiple types of implementation strat-
egies: (1) audit and feedback, which involved routine 
collection and reporting of performance data back to 
clinics to inform ongoing quality improvement efforts; 
(2) a learning collaborative that included structured 
workshops on organizational change strategies and prob-
lem-solving; (3) external facilitation involving on-site 
coaching visits to support leadership, staff and providers; 
(4) educational didactic webinars that deepened knowl-
edge; (5) peer forums to enhance peer learning, and (6) 
structured site visits to foster networking and resource 
sharing [25].

Sample selection and study population
A total of 96 primary care clinics that applied to par-
ticipate in the MOUD practice change program were 
enrolled following a two-stage selection process. Clinics 
were screened for eligibility: (1) providing care in Cali-
fornia (2), meeting safety-net healthcare organization cri-
teria (3), non-profit/tax-exempt status under 501(C) [3] 
or governmental/tribal entity (4), provision of compre-
hensive primary care services, and (5) interest in MOUD 
implementation and/or expansion. Interest in MOUD 
expansion was self-reported by clinic per application 
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and ascertained qualitatively through their application. 
All clinics that applied were interested in MOUD expan-
sion. The sample included both startup clinics that were 
initiating new MOUD programs with little to no prior 
prescribing experience, and scale-up clinics that were 
expanding their existing MOUD services. One clinic 
withdrew due to prescriber turnover which resulted in a 
final analytic sample of 95 clinics.

Data collection and measures
The primary outcome was MOUD practice capability, 
measured using the validated Integrating Medications 
for Addiction Treatment in Primary Care (IMAT-PC) 
index, which assesses seven domains (infrastructure, 
clinic culture and environment, patient identification 
and initiating care, care delivery and treatment response 
monitoring, care coordination, workforce, and staff train-
ing and development) related to medication integra-
tion in the primary care setting [26, 27]. The IMAT-PC 
index measures organizational capability for delivering 
MOUD in primary care settings rather than assessing 
the clinical quality or patient outcomes of treatment. The 
IMAT domain scores were averaged with equal weight-
ing to create a total composite score ranging from 1 to 
5, with scores of 1 to 2 indicating low capability, 3 indi-
cating moderate capability, and 4 to 5 indicating high 
capability. The IMAT-PC was utilized across all four 
waves (2019–2024), with data collected at baseline, mid-
point, and endpoint of each wave. This team-based and 
self-reported assessment tool demonstrated high inter-
nal consistency (Cronbach’s α = 0.89). Secondary out-
comes included adoption (number of providers actively 
prescribing MOUD) and patient reach (number of new 
and established patients prescribed MOUD at each 
time point) collected quarterly via a secure online por-
tal. This approach aligns with implementation science 
frameworks that distinguish between implementation 
outcomes (e.g., reach, adoption) and clinical outcomes 
(e.g., patient health status, treatment retention) [28–30]. 
Our primary implementation outcomes were guided by 
the reach, effectiveness, adoption, implementation and 
maintenance (RE-AIM) framework [30]. Clinics also 
reported baseline data on clinic characteristics including 
geographic location, medically underserved area (MUA) 
designation, medically underserved population (MUP) 
designation, organization size (categorized as 0–14,999, 
15,000–59,999, or ≥ 60,000 patients), organization type 
(FQHC, FQHC look-alike, ambulatory care clinic, Health 
Services clinic, or rural health clinic), and patient insur-
ance type (Medicaid, Medicare, dual eligible, private 
insurance, and uninsured rates). Medically underserved 
areas designate geographic regions with shortages of pri-
mary care providers, while medically underserved popu-
lations identify specific population groups experiencing 

economic, cultural, or linguistic barriers to healthcare 
within a defined area.

Statistical analysis
We used latent class growth analysis to identify distinct 
patterns of IMAT-PC score trajectories over time using 
model selection based on Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), entropy, 
Lo-Mendell-Ruben (LMR), and clinical meaningful-
ness [31–33]. LCGA differs from traditional latent class 
analysis (LCA) in that it classifies individuals based on 
longitudinal change patterns rather than cross-sectional 
characteristics, allowing identification of trajectory-
based subgroups. Bivariate analyses using chi-square 
tests for categorical variables and analysis of variance 
(ANOVA) for continuous variables examined differences 
between latent classes (hereafter referred to as “trajectory 
classes”). We conducted post-hoc testing for significant 
associations identified in bivariate analyses. LCGA com-
putations were completed using MPlus version 8.11, and 
all other analyses were performed using R version 4.4.3 
[34, 35].

Results
Clinic characteristics
The study included 95 primary care clinics (Table 1) with 
88.4% located in urban or metropolitan areas and 11.6% 
in rural regions as designated by the Federal Office of 
Rural Health Policy [36]. Importantly, 30.5% of clin-
ics were designated as medically underserved areas and 
6.3% served medically underserved populations [37]. The 
sample consisted primarily of (68.4%) FQHCs plus FQHC 
look-alikes (4.2%) followed by ambulatory care clinics 
(17.9%) and smaller numbers of Indian Health Services 
clinics (5.3%) and rural health clinics at (4.2%). The orga-
nizations varied in size, with 43.2% classified as small 
(i.e., serving under 15,000 patients), 27.4% as medium 
(i.e., serving 15,000–59,999 patients), and 29.5% as large 
(i.e., serving over 60,000 patients). For patient insur-
ance type, we report the median percentage of patients 
within each clinic. The median percentage of patients on 
Medicaid across clinics was 65.0% (IQR: 50.0–71.0), fol-
lowed by uninsured patients at a median of 14.0% (IQR: 
8.0–20.0), then Medicare at 9.0% (IQR: 3.0–15.0), with 
private insurance and dual eligibility each at a median of 
3.0% (IQR: 1.0–10.0 and 1.0–7.0, respectively).

At baseline, clinics demonstrated variable levels of 
implementation capability across the IMAT-PC domains. 
Of the domains, the infrastructure domain showed the 
highest average score (M = 3.9, SD = 0.8); staff training 
and development had the lowest (M = 2.4, SD = 1.0). The 
remaining domains (i.e., clinic culture, patient identifica-
tion, care delivery, care coordination, and workforce) all 
showed similar average scores ranging from 3.0 to 3.2. 
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The total IMAT-PC score averaged 3.2 (SD = 0.8), indicat-
ing moderate MOUD practice capability across clinics. 
Regarding implementation outcomes, clinics had a mean 
of 3.1 (SD = 4.0) actively prescribing providers and served 
an average of 38 patients with MOUD per clinic during 
the baseline quarter (SD = 82); the wide range of values 
(0–18 providers and 0-510 patients) suggest substantial 
variation in implementation outcomes across clinics.

Model fit and trajectory classes
We evaluated model fit for the LCGA using multiple 
established indices, including the AIC, BIC, entropy, and 
the LMR-LRT (Table 2). These fit statistics supported our 
selected model, balancing statistical fit and interpretabil-
ity. In particular, the LMR-LRT provided evidence that 
the selected number of classes significantly improved 
model fit compared to models with one fewer class, sug-
gesting meaningful separation of trajectory patterns.

Importantly, LCGA assumes no within-class variance 
in growth parameters (i.e., fixed slopes and intercepts 
within each class), meaning within-class normality and 
homogeneity of variance are not required in the same 
way as in parametric regression models. Instead, variance 
is captured between classes. We inspected observed vs. 
estimated trajectories within each class to assess poten-
tial misfit. Given the parsimony and interpretability of 
the LCGA solution, and lack of theoretical justifica-
tion for estimating within-class variance, more complex 
approaches such as growth mixture modeling were not 
pursued.

We computed one to six LCGA models, starting with a 
single class and increasing by one up to the final six class 
model. Five and six-class solutions were discarded due to 

Table 1  Descriptive statistics for clinic characteristics and patient demographics at baseline (N = 95)
Clinic characteristic N (%) / Median (IQR)
Population density
  Urban / metropolitan 84 (88.4%)
  Rural (FORHP-designated) 11 (11.6%)
Medically underserved area designation
  No medically underserved area designation 66 (69.5%)
  Medically underserved area designation (MUA) 29 (30.5%)
Medically underserved population status
  No medically underserved population designation 89 (93.7%)
  Medically underserved population designation (MUP) 6 (6.3%)
Primary care clinic designation
  Federally Qualified Health Center (FQHC) 65 (68.4%)
  FQHC look-alike 4 (4.2%)
  Ambulatory care clinic 17 (17.9%)
  Indian Health Service clinic 5 (5.3%)
  Rural health clinic 4 (4.2%)
Organization size
  Small size (0–14,999 patients) 41 (43.2%)
  Medium size (15,000–59,999 patients) 26 (27.4%)
  Large size (60,000 or more patients) 28 (29.5%)
Organization number of unique patients, Median (IQR) 21,447 (8957–61836)
Patient insurance type, Median % (IQR)
  Patients on Medicaid (%) 65.0 (50.0–71.0)
  Patients on Medicare (%) 9.0 (3.0–15.0)
  Patients with dual eligibility (%) 3.0 (1.0–7.0)
  Patients on private insurance (%) 3.0 (1.0–10.0)
  Uninsured patients (%) 14.0 (8.0–20.0)
Note. Percentages may not sum to 100% due to rounding. FORHP - Federal Office of Rural Health Policy. MUA – Medically underserved area; MUP – Medically 
underserved population; IQR – Interquartile range

Table 2  Latent class fit indices and most likely class membership 
sizes
Model AIC BIC Entropy Class Sizes (%) LMR 

p-value
1-class 565.78 578.55 -- 100% --
2-class 465.87 486.30 0.83 48.5%, 51.5% < 0.01
3-class 425.30 453.40 0.89 41.0%, 47.4%, 

11.6%
0.01

4-class 420.57 456.32 0.91 41.1%, 2.0%, 
10.5%, 46.3%

0.48

Note: aic = akaike information criterion; bic = bayesian information criterion; 
LMR = Lo-Mendell-Rubin likelihood ratio test. Lower AIC and BIC values indicate 
better model fit. Entropy values closer to 1 reflect clearer class separation 
(values ≥ 0.80 are considered acceptable). A significant Lo-Mendell-Rubin (LMR) 
p-value (p < 0.05) supports improved fit over a model with one fewer class
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empty classes and poor model fit respectively. Working 
back from the four-class model, though the entropy value 
was acceptable in the four-class model, the LMR p-value 
indicates that adding the additional class did not improve 
model fit when compared to the model with one less (k-
1) class. Thus, examining the three-class model next, we 
found that the BIC was superior (lowest value), and the 
entropy and LMR values were acceptable. We also noted 
that the added class from the two-class model was a small 
but clinically meaningful class that was low in initial 
IMAT, but showed the most improvement across time. 
Thus, considering model fit indices, class sizes, and clini-
cal relevance, the three-class solution was deemed the 
most parsimonious and clinically relevant.

Analysis of the 95 primary care clinics revealed three 
distinct implementation trajectory classes (Table  3; 
Fig. 1):

Class 1- Elevated improving clinics (n = 39; 41.0%) dem-
onstrated baseline IMAT-PC scores of 3.8 (SD = 0.3) and 
improved to 4.5 (SD = 0.3) at program end; this class 
achieved the highest patient reach (mean = 84.0 patients; 
SD = 105.0). This class of elevated improving clinics con-
sistently maintained the highest MOUD practice capa-
bility and demonstrated steady improvement across 
measurement periods.

Class 2 - Moderate improving clinics (n = 45; 47.4%) 
began with baseline scores of 2.9 (SD = 0.4) and improved 
to 3.8 (SD = 0.4) at program end which resulted in reach-
ing intermediate patient volumes (mean = 39.0 patients; 
SD = 67.0). This class showed moderate but consistent 
improvement while maintaining stable mid-level MOUD 
practice capability.

Class 3 - Low improving clinics (n = 11; 11.6%) started 
with baseline scores of 1.9 (SD = 0.7) and showed the 
greatest relative improvement, reaching 3.3 (SD = 0.7) 
at program end but maintained limited patient reach 
(mean = 13.0 patients; SD = 17.0). Despite having the 
lowest absolute scores, the low improving class dem-
onstrated the greatest relative improvement in MOUD 
practice capability and showed a consistent upward tra-
jectory by the program end which suggests that addi-
tional gains may emerge beyond our study window.

Baseline characteristics of implementation trajectory 
classes
Implementation trajectory class membership was sig-
nificantly associated with clinic-level characteristics 
(Table  3). The distribution of clinics serving medically 
underserved areas varied significantly across trajectory 
class (p = 0.03); moderate improving clinics had the high-
est proportion (40.0%), followed by elevated improving 

Table 3  Clinic characteristics by MOUD implementation trajectory: elevated, moderate, and low improving classes (N = 95)
Clinic characteristics Elevated 

improving 
N (%)

Moderate 
improving N 
(%)

Low improv-
ing N (%)

Total 
N (%)

p-value

Total number of clinics 39 (41.0%) 45 (47.4%) 11 (11.6%) 95 (100.0%)
Number of rural clinics 6 (15.4%) 5 (11.1%) 0 (0.0%) 11 (11.6%) 0.37
Medically underserved area 
(MUA)

11 (28.2%) ᵃᵇ 18 (40.0%) ᵃ 0 (0.0%) ᵇ 29 (30.5%) 0.03*

Medically underserved population (MUP) 3 (7.7%) ᵃᵇ 0 (0.0%) ᵃ 3 (27.3%)ᵇ 6 (6.3%) < 0.01**
Organization size 0.30
  0–14,999 patients 20 (51.3%) 19 (42.2%) 2 (18.2%) 41 (43.2%)
  15,000–59,999 patients 11 (28.2%) 11 (24.4%) 4 (36.4%) 26 (27.4%)
  60,000 + patients 8 (20.5%) 15 (33.3%) 5 (45.5%) 28 (29.5%)
Organization type 0.16
  FQHC or FQHC look-alike 33 (84.6%) 30.0 (66.7%) 6 (54.5%) 69 (72.6%)
  Other 6 (15.4%) 15 (33.3%) 5 (45.5%) 26 (27.4%)
Site Medicaid proportion (%)1,2 64.3 (20.0) 56.4 (15.8) 67.2 (9.9) 61.1 (17.6) 0.07
Site Medicare proportion (%)1,2 10.7 (16.4) 11.9 (10.0) 9.9 (6.3) 11.1 (12.8) 0.89
Site dual eligible proportion (%)1,2 6.3 (10.2) 4.2 (5.0) 3.9 (4.6) 5.2 (7.9) 0.26
Site private insurance proportion (%)1,2 5.6 (7.3) 8.9 (11.8) 3.4 (4.1) 6.8 (9.5) 0.17
Site uninsured proportion (%)1,2 13.2 (9.8) 17.0 (12.1) 16.4 (14.3) 15.3 (11.4) 0.32
Reach at baseline: number of patients receiving MOUD1,2 51.0 (76.0) 34.0 (93.0) 4.0 (6.0) 38.0 (82.0) 0.25
Reach at endpoint: number of patients receiving MOUD1,2 84.0 (105.0) a 39.0 (67.0) ᵇ 13.0 (17.0) ᵇ 54.0 (85.0) 0.01*
Adoption at baseline: number of providers prescribing MOUD1,2 3.4 (3.8) 3.4 (4.6) 0.9 (1.0) 3.1 (4.0) 0.18
Adoption at endpoint: number of providers prescribing MOUD1,2 5.3 (4.5) 5.6 (9.0) 2.7 (1.8) 5.1 (6.9) 0.57
Note. Chi-Square test unless otherwise specified; 1 Indicates ANOVA; 2 Indicates Mean (SD); * significant at < 0.05. ** significant at < 0.01. Values within a row not 
sharing the same superscript letter (a, b) differ significantly based on Tukey HSD post hoc analyses (p < 0.05)

Assumptions of normality (Shapiro-Wilks) and homogeneity of variance (Bartlett’s test) were not met for several variables, likely due to small class sizes
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(28.2%), with no representation (0.0%) in the low improv-
ing clinics. Conversely, clinics serving medically under-
served populations were disproportionately represented 
in the low improving class (27.3%) compared with the 
moderate improving class (0.0%) (p = < 0.01). The ele-
vated improving class included 28.2% MUA and 7.7% 
MUP designated clinics. In subsequent post-hoc analy-
sis, we found that in the moderate improving class, the 
proportion of clinics with a designation as serving medi-
cally underserved areas was 40.0% (n = 18) whereas the 
low improving class had 0.0% (n = 0) of clinics serving 
medically underserved areas (p = 0.03). Conversely, the 
moderate improving class had 0% (n = 0) of clinics with 
a designation as serving medically underserved popu-
lations, whereas over a quarter (27.3%; n = 3) of the low 
improving class serviced medically underserved popula-
tions (p = < 0.01).

Organizational size, insurance status, and urbanic-
ity demonstrated interesting patterns but did not reach 
statistical significance. Small clinics (< 15,000 patients) 
comprised 51.3% of the elevated improving class, 42.2% 
of moderate improving, and 18.2% of low improving. 
Medium-sized clinics (15,000–59,999 patients) repre-
sented 28.2% of elevated improving, 24.4% of moderate 
improving, and 36.4% of low improving classes. Large 

clinics (≥ 60,000 patients) made up 20.5% of elevated 
improving, 33.3% of moderate improving, and 45.5% of 
low improving classes. Medicaid rates varied across tra-
jectory classes (elevated improving: 64.3%; moderate 
improving: 56.4%; low improving: 67.2%). The proportion 
of urban clinics (compared with rural clinics) remained 
consistently high across all trajectory classes (84.6% in 
elevated improving, 88.9% in moderate improving, and 
100.0% in low improving classes).

Reach and adoption outcomes
We conducted a Tukey Honestly Significant Difference 
(Tukey HSD) post-hoc analysis to identify significant dif-
ferences in the three trajectory classes on provider adop-
tion and patient reach outcomes (Table  3). For patient 
reach, significant differences were observed between the 
three implementation trajectory classes. Post-hoc analy-
sis revealed that elevated improving clinics achieved sig-
nificantly higher patient reach compared to moderate 
improving clinics (mean difference = 45; p = 0.03). The dif-
ference between elevated improving and low improving 
clinics showed the largest absolute difference in patient 
reach (mean difference = 71; p = 0.04). The difference 
between moderate improving and low improving clinics 

Fig. 1  Average IMAT-PC score by timepoint and by trajectory class
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was not statistically significant (mean difference = 40; 
p = 0.84).

For provider adoption, we found no significant differ-
ences between the three trajectory classes at either base-
line or endpoint. Despite variability in MOUD practice 
capability across classes, all three classes maintained 
similar levels of provider adoption throughout the study 
period. Because the chi-square value for adoption was 
non-significant, indicating no significant differences on 
adoption scores at baseline or endpoint, we did not com-
pute post-hoc analysis.

The assumption of normality for continuous variables 
across latent classes was not met for most classes (as 
tested by Shapiro-Wilk), likely due to small sample sizes. 
Homogeneity of variances (Bartlett’s test) was not met 
for several variables, though Levene’s test resolved most 
violations except patient reach at the final timepoint, but 
the variable maintained significant findings in ANOVA 
testing. We conducted a post hoc power analysis to eval-
uate the sensitivity of our ANOVA comparisons across 
trajectory classes, with particular attention to the small-
est class (n = 11). Using a conservative balanced design 
approximation, we found that power to detect a medium 
effect size (Cohen’s f = 0.25) was approximately 56%, 
while power to detect a large effect size (f = 0.40) was 
approximately 94%. Given the unbalanced group sizes 
in our actual data, these estimates likely overstate power 
for detecting medium effects, particularly in compari-
sons involving the smallest class. As a sensitivity analysis, 
we also conducted non-parametric tests and examined 
pairwise differences. Results were consistent with the 
ANOVA findings, supporting the robustness of observed 
group differences despite the smaller sample size in one 
class.

Discussion
Our study identified three distinct implementation 
trajectory classes among safety-net primary care clin-
ics delivering MOUD: elevated improving, moderate 
improving, and low improving. These three classes dem-
onstrated significant differences in patient reach out-
comes and were significantly associated with specific 
clinic-level characteristics. Importantly, while all clinics 
were offered the same implementation support activi-
ties and improved MOUD practice capability overall, 
their growth trajectories varied significantly. Elevated 
improving clinics achieved significantly higher patient 
reach compared to other classes, which is underscored by 
the fact that over half were small-sized clinics (< 15,000 
patients). These trajectory patterns align with findings 
from Hoekstra et al., who identified similar trajectory 
classes in Dutch rehabilitation clinics [23]. However, 
unlike Hoekstra et al., who found no association between 
clinic trajectory classes and implementation outcomes, 

our study demonstrated significant associations with 
implementation outcomes (e.g., patient reach). Our find-
ings provide evidence that increasing MOUD practice 
capability through structured support can substantially 
increase MOUD access in primary care settings, but 
clinic-level characteristics may influence implementation 
outcomes.

The three trajectory classes all showed improvements 
in MOUD practice capability from baseline. However, 
clinics differed significantly on patient reach outcomes by 
the final time point. Elevated improving clinics achieved 
more than double the number of total patients receiving 
MOUD compared to moderate improving clinics and 
more than six times compared to low improving clin-
ics; these results were achieved despite having the high-
est proportion of small-sized clinics. This demonstrates 
that clinics with strong baseline MOUD capability and 
increasing organizational capability can deliver high vol-
umes of MOUD regardless of patient panel size (i.e., the 
total number of patients). Importantly, patient reach did 
not significantly differ among the three classes at baseline 
which supports the possibility that the subsequent differ-
ences in reach emerged during the study period. These 
findings support that MOUD practice change strategies 
combined with strong organizational capabilities more 
quickly and directly results in changes in MOUD access 
for primary care patients in community health settings.

Designation as a medically underserviced clinic was 
significantly associated with trajectory class. Clinics serv-
ing medically underserved areas were overrepresented 
in the moderate improving class with none in the low 
improving class; clinics serving medically underserved 
populations were predominantly in the low improving 
class. Clinics in MUAs are often rural and may face bar-
riers related to geographic and workforce supply issues, 
necessitating strategies like telehealth expansion. Con-
versely, clinics servicing MUPs, which can be urban 
or rural, face socioeconomic and cultural access issues 
that require interventions such as culturally competent 
care and financial assistance. Our findings align with 
previous research identifying the need for targeted sup-
port in resource-constrained settings [38, 39]. However, 
our findings suggest that even clinics serving medically 
underserved populations in the low improving class can 
substantially increase their MOUD practice capability 
with structured support, and therefore these interven-
tions are valuable to all trajectory classes.

Implementation trajectory class was not associated 
with significant changes in the number of providers pre-
scribing MOUD (i.e., provider adoption). This contrasts 
with previous studies showing that structured imple-
mentation strategies, including learning collaboratives, 
significantly enhanced MOUD adoption among provid-
ers [40, 41]. Our results suggest that other person-level 
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variables (e.g. provider-based medication stigma), vari-
able clinical expertise, and comfort with addiction treat-
ment may have had a strong influence on adoption [15, 
42]. These data show that successful implementation may 
require targeted approaches that address organizational 
readiness and provider-level factors through increased 
training [43] and team-based approaches [44]. Impor-
tantly, our study was conducted during the COVID-19 
pandemic when telehealth restrictions were loosened and 
the X-waiver was eliminated which may have affected our 
adoption-related findings [45, 46].

Limitations
The observational longitudinal design mitigates causal 
inferences about the relationships between participation 
in this practice change initiative, clinic characteristics 
and implementation outcomes. Data collection dur-
ing COVID-19 likely influenced our findings through 
changes in telehealth policy [47]. Potential confounds 
include variable staff turnover rates and participation in 
the implementation strategies that were offered. Statisti-
cal analysis was limited by the small number of clinics in 
the low improving class and non-normal distributions of 
several measures. We used baseline clinic characteristics 
for the categorization of clinic size, and we did not ascer-
tain changes in patient panel size over time. Program 
participation varied across clinics and study outcomes 
(IMAT-PC, patient reach, provider adoption) relied on 
clinic-level report. Clinics self-selected into the program, 
potentially biasing toward organizations with greater 
readiness for change.

Conclusions
This is the first study to examine implementation tra-
jectory classes in MOUD capability building and their 
associations with implementation outcomes in primary 
care settings. Our findings that elevated improving clin-
ics were able to achieve more than double the patient 
reach of the moderate improving class and more than six 
times the reach of the low improving class underscores 
the central role of MOUD practice capability in improv-
ing access to MOUDs. However, the disproportionate 
representation of clinics serving medically underserved 
populations in the low improving class highlights critical 
issues related to health equity. These findings have imme-
diate practical implications for expanding MOUD access. 
Clinics can use the IMAT-PC diagnostically to objectively 
establish a baseline of current MOUD practice capability 
and apply it as a continuous measure to track long-term 
improvement through reassessment. Future research 
should evaluate how to select and tailor implementation 
support and practice change strategies to specific clinic 
characteristics.
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