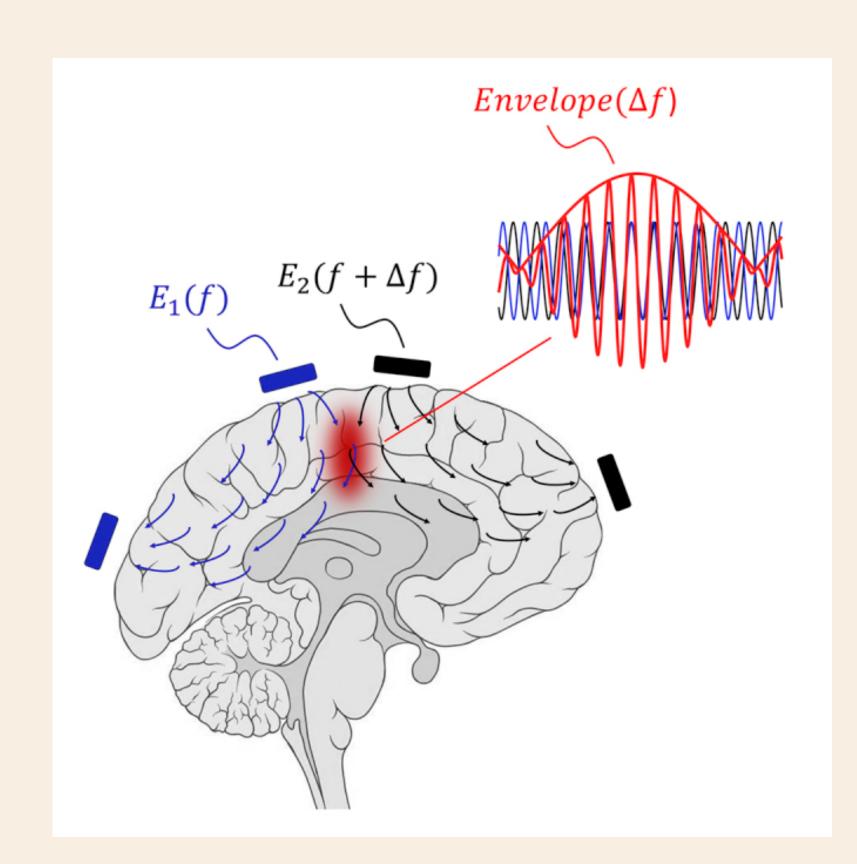
Temporal Interference Neurostimulation as a Novel Non-Invasive Approach for Addiction Treatment


Targeting the Nucleus Accumbens

Mariah K. Evans,¹ Priyamvada Modak,² & Joshua W. Brown¹ ¹ Indiana University Department of Psychological & Brain Sciences, Bloomington, IN, USA ²New York University, Department of Psychiatry, Grossman School of Medicine, New York, NY, USA

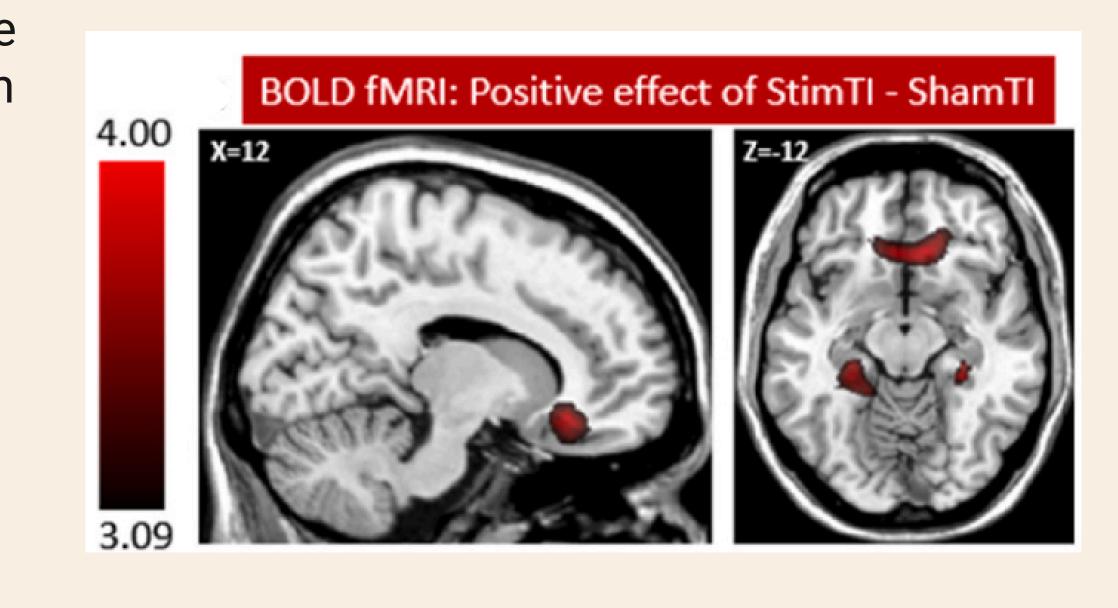
BACKGROUND

Neurostimulation has emerged as a promising treatment for substance use disorders.^{1,2} Current methods are limited in terms of scalability and scope, and may not be able to specifically target deep brain regions. Stimulating the nucleus accumbens (NAcc), a key reward processing structure, could be effective for treating addiction.3

Interference (TI)

Temporal

neurostimulation is a novel, noninvasive technique that allows for targeting of deep brain regions (e.g., the NAcc) without affecting the overlying cortex using intersecting electrical fields.^{4,5}


Image sourced from Grossman, et al., 2017

PILOT STUDY

How does TI affect deep brain structures?

Method: N=16 healthy subjects received TI stimulation of the left orbitofrontal cortex (OFC) at 20Hz beat frequency while in fMRI scanner. We assessed effects of TI vs. sham stimulation.

Result: Active TI stimulation of the left orbitofrontal cortex (OFC) did increase **BOLD** activation in the targeted region compared to sham stimulation (p=0.021).

Positive effect of contrast StimTI-ShamTI in OFC (zscore, across subjects). 'Positive effect' - Positive zscore of any voxel across the subjects for the StimTI -ShamTI contrast. Sourced from Modak et al., 2024.

ONGOING WORK: CLINICAL TRIAL

How does TI impact real-time craving and substance use?

We're using new multi-TI (4 electrode pairs) in our randomized controlled trial. 120 subjects will undergo 60 minutes of (a) active TI of the NAcc or (b) sham TI, during which they will have access to our custom nicotine vaporizer measuring inhaled vapor volume over time.6 Craving will be reported every 10 minutes. Post-TI, subjects will complete 7 days of ecological momentary assessment (EMA) tracking daily nicotine usage and craving. of Self-report measures comorbid substance use will be completed at baseline and at 7-day follow up.

Soterix Interferential Neuromodulation System

POTENTIAL IMPACT & FUTURE DIRECTIONS

Pilot findings support TI's ability to modulate reward-related circuits, demonstrating potential as a targeted intervention for addiction. If validated, TI could offer an affordable, scalable alternative to invasive neuromodulation, expanding access to innovative addiction treatment worldwide. Our ongoing research aims to optimize TI parameters and investigate its long-term effects on addiction-related behaviors.

REFERENCES

- ¹ Wang TR, Moosa S, Dallapiazza RF, Elias WJ, Lynch WJ. (2018). Deep brain stimulation for the treatment of drug addiction. Neurosurg Focus. 45(2):E11.
- ² Harmelech T, Hanlon CA, Tendler A. (2023). Transcranial magnetic stimulation as a tool to promote smoking cessation and decrease drug and alcohol use. Brain Sci. 13(7):1072.
- ³ Brown JW. (2023). Transcranial Electrical Neurostimulation as a Potential Addiction Treatment. *Inquiry*. 60:469580231221286.
- ⁴ Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk HJ, ... & Boyden ES. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 169(6), 1029-1041.
- ⁵ Modak P, Fine J, Colon B., ... & Brown JW. (2024). Temporal interference electrical neurostimulation at 20 Hz beat frequency leads to increased fMRI BOLD activation in orbitofrontal cortex in humans. Brain Stimulat. 17(4):867-875.

