Jose Luis Vazquez Martinez

Infralimbic Cortex Biases Preference Decision Making for Offspring over Competing Cocaine-Associated Stimuli in New Mother Rats

Jose Luis Vazquez Martinez

Source:

Pereira, M., & Morrell, J. I. (2020). Infralimbic Cortex Biases Preference Decision Making for Offspring over Competing Cocaine-Associated Stimuli in New Mother Rats. Eneuro7(4).

 

Abstract

In the context of drug abuse, converging evidence suggests that cocaine use in new mothers is significantly reduced by the competing motivation related to child rearing. Given the demonstrated importance of the medial prefrontal cortex (mPFC) in decision-making processes, we investigated the contribution of distinct regions of the mPFC [anterior cingulate (Cg1), prelimbic (PrL), infralimbic (IL)] to decision making in new mother rats performing a concurrent pup/cocaine choice conditioned place preference (CPP) task. When given a choice, inactivation of IL cortex significantly biased decision making of mother rats toward cocaine-associated cues, highly contrasting the distribution of preferences by control groups. In contrast, inactivation of PrL cortex had the opposite effect, significantly increasing offspring bias in the decision making, such that none of the mothers chose the cocaine-associated alternative. Cg1 inactivation was without effect. Functional inactivation of these same mPFC subregions had no effect in a non-conflict CPP task in which context-induced cocaine or pup seeking were examined separately. Notably, inactivation of the IL cortex also interfered with maternal behavior. Taken together, we have identified a specific role of the IL cortex in the prioritization of offspring over drug competing alternatives, thus promoting resistance to drug use in new mothers.