Jose Luis Vazquez Martinez

Modeling cocaine traffickers and counterdrug interdiction forces as a complex adaptive system

Jose Luis Vazquez Martinez

Source: www.pnas.org/cgi/doi/10.1073/pnas.1812459116

 

Abstract

Counterdrug interdiction efforts designed to seize or disrupt cocaine shipments between South American source zones and US markets remain a core US “supply side” drug policy and national security strategy. However, despite a long history of US-led interdiction efforts in the Western Hemisphere, cocaine movements to the United States through Central America, or “narco-trafficking,” continue to rise. Here, we developed a spatially explicit agent-based model (ABM), called “NarcoLogic,” of narco-trafficker operational decision making in response to interdiction forces to investigate the root causes of interdiction ineffectiveness across space and time. The central premise tested was that spatial proliferation and resiliency of narco-trafficking are not a consequence of ineffective interdiction, but rather part and natural consequence of interdiction itself. Model development relied on multiple theoretical perspectives, empirical studies, media reports, and the authors’ own years of field research in the region. Parameterization and validation used the best available, authoritative data source for illicit cocaine flows. Despite inherently biased, unreliable, and/or incomplete data of a clandestine phenomenon, the model compellingly reproduced the “cat-and-mouse” dynamic between narco-traffickers and interdiction forces others have qualitatively described. The model produced qualitatively accurate and quantitatively realistic spatial and temporal patterns of cocaine trafficking in response to interdiction events. The NarcoLogic model offers a much-needed, evidence-based tool for the robust assessment of different drug policy scenarios, and their likely impact on trafficker behavior and the many collateral damages associated with the militarized war on drugs.

 

Significance

The US government’s cocaine interdiction mission in the transit zone of Central America is now in its fifth decade despite its long-demonstrated ineffectiveness, both in cost and results. We developed a model that builds an interdisciplinary understanding of the structure and function of narco-trafficking networks and their coevolution with interdiction efforts as a complex adaptive system. The model produced realistic predictions of where and when narco-traffickers move in and around Central America in response to interdiction. The model demonstrated that narco-trafficking is as widespread and difficult to eradicate as it is because of interdiction, and increased interdiction will continue to spread traffickers into new areas, allowing them to continue to move drugs north.