Conventional and Genetic Evidence on Alcohol and Vascular Disease Aetiology: A Prospective Study of 500 000 Men and Women in China



Moderate alcohol intake has been associated with reduced cardiovascular risk in many studies, in comparison with abstinence or with heavier drinking. Studies in east Asia can help determine whether these associations are causal, since two common genetic variants greatly affect alcohol drinking patterns. We used these two variants to assess the relationships between cardiovascular risk and genotype-predicted mean alcohol intake in men, contrasting the findings in men with those in women (few of whom drink).


The prospective China Kadoorie Biobank enrolled 512 715 adults between June 25, 2004, and July 15, 2008, from ten areas of China, recording alcohol use and other characteristics. It followed them for about 10 years (until Jan 1, 2017), monitoring cardiovascular disease (including ischaemic stroke, intracerebral haemorrhage, and myocardial infarction) by linkage with morbidity and mortality registries and electronic hospital records. 161 498 participants were genotyped for two variants that alter alcohol metabolism, ALDH2-rs671 and ADH1B-rs1229984. Adjusted Cox regression was used to obtain the relative risks associating disease incidence with self-reported drinking patterns (conventional epidemiology) or with genotype-predicted mean male alcohol intake (genetic epidemiology—ie, Mendelian randomisation), with stratification by study area to control for variation between areas in disease rates and in genotype-predicted intake.


33% (69 897/210 205) of men reported drinking alcohol in most weeks, mainly as spirits, compared with only 2% (6245/302 510) of women. Among men, conventional epidemiology showed that self-reported alcohol intake had U-shaped associations with the incidence of ischaemic stroke (n=14 930), intracerebral haemorrhage (n=3496), and acute myocardial infarction (n=2958); men who reported drinking about 100 g of alcohol per week (one to two drinks per day) had lower risks of all three diseases than non-drinkers or heavier drinkers. In contrast, although genotype-predicted mean male alcohol intake varied widely (from 4 to 256 g per week—ie, near zero to about four drinks per day), it did not have any U-shaped associations with risk. For stroke, genotype-predicted mean alcohol intake had a continuously positive log-linear association with risk, which was stronger for intracerebral haemorrhage (relative risk [RR] per 280 g per week 1·58, 95% CI 1·36–1·84, p<0·0001) than for ischaemic stroke (1·27, 1·13–1·43, p=0·0001). For myocardial infarction, however, genotype-predicted mean alcohol intake was not significantly associated with risk (RR per 280 g per week 0·96, 95% CI 0·78–1·18, p=0·69). Usual alcohol intake in current drinkers and genotype-predicted alcohol intake in all men had similarly strong positive associations with systolic blood pressure (each p<0·0001). Among women, few drank and the studied genotypes did not predict high mean alcohol intake and were not positively associated with blood pressure, stroke, or myocardial infarction.


Genetic epidemiology shows that the apparently protective effects of moderate alcohol intake against stroke are largely non-causal. Alcohol consumption uniformly increases blood pressure and stroke risk, and appears in this one study to have little net effect on the risk of myocardial infarction.


Chinese Ministry of Science and Technology, Kadoorie Charitable Foundation, National Natural Science Foundation of China, British Heart Foundation, Cancer Research UK, GlaxoSmithKline, Medical Research Council, and Wellcome Trust.

ADGRL3 (LPHN3) Variants Predict Substance Use Disorder


Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.

Neighbourhood Density of Alcohol Outlets and Genetic and Environmental Influences on Alcohol Problems

Gene-environment interactions occur when different surroundings make it more or less likely for a particular trait or disorder to develop.

The concept of ‘alcogenic’ environments describes features, such as alcohol outlet density or marketing, which influence patterns of alcohol consumption.

A recent study, which analysed longitudinal data of 18–26-year-olds, has examined the link between genetic variation in alcohol problems and the number of alcohol outlets in a community.

The results from the study found that:

  • There was evidence to suggest that the extent of genetic and environmental influences on alcohol problems varied with the density of alcohol outlets in the community.
  • The heritability of alcohol problems for those residing in a neighbourhood with more than 10 on-premises outlets was 78% compared with 11% for those in a community with no on-premises outlets.

Overall the results suggest that in environments with fewer alcohol outlets and availability the genetic predisposition to develop problems is dampened. However, in environments where there is greater availability of alcohol the genetic predisposition is heightened.

The researchers suggest that people who are genetically predisposed to develop alcohol problems may be especially sensitive to the influence of alcohol outlet density in their community. This has potential implications for the design of prevention interventions.

Mechanisms of Neuroimmune Gene Induction in Alcoholism



Alcoholism is a primary, chronic relapsing disease of brain reward, motivation, memory, and related circuitry. It is characterized by an individual’s continued drinking despite negative consequences related to alcohol use, which is exemplified by alcohol use leading to clinically significant impairment or distress. Chronic alcohol consumption increases the expression of innate immune signaling molecules (ISMs) in the brain that alter cognitive processes and promote alcohol drinking.


Unraveling the mechanisms of alcohol-induced neuroimmune gene induction is complicated by positive loops of multiple cytokines and other signaling molecules that converge on nuclear factor kappa-light-chain-enhancer of activated B cells and activator protein-1 leading to induction of additional neuroimmune signaling molecules that amplify and expand the expression of ISMs.


Studies from our laboratory employing reverse transcription polymerase chain reaction (RT-PCR) to assess mRNA, immunohistochemistry and Western blot analysis to assess protein expression, and others suggest that ethanol increases brain neuroimmune gene and protein expression through two distinct mechanisms involving (1) systemic induction of innate immune molecules that are transported from blood to the brain and (2) the direct release of high-mobility group box 1 (HMGB1) from neurons in the brain. Released HMGB1 signals through multiple receptors, particularly Toll-like receptor (TLR) 4, that potentiate cytokine receptor responses leading to a hyperexcitable state that disrupts neuronal networks and increases excitotoxic neuronal death. Innate immune gene activation in brain is persistent, consistent with the chronic relapsing disease that is alcoholism. Expression of HMGB1, TLRs, and other ISMs is increased several-fold in the human orbital frontal cortex, and expression of these molecules is highly correlated with each other as well as lifetime alcohol consumption and age of drinking onset.


The persistent and cumulative nature of alcohol on HMGB1 and TLR gene induction support their involvement in alcohol-induced long-term changes in brain function and neurodegeneration.

Brian Morales

UNODC Scientific Consultation – December 2015